mirror of https://github.com/hpcaitech/ColossalAI
95 lines
2.0 KiB
Python
95 lines
2.0 KiB
Python
![]() |
import os
|
||
|
from pathlib import Path
|
||
|
|
||
|
BATCH_SIZE = 128
|
||
|
IMG_SIZE = 32
|
||
|
|
||
|
# resnet 50
|
||
|
model = dict(
|
||
|
type='VanillaResNet',
|
||
|
block_type='ResNetBottleneck',
|
||
|
layers=[3, 4, 6, 3],
|
||
|
num_cls=10
|
||
|
)
|
||
|
|
||
|
train_data = dict(
|
||
|
dataset=dict(
|
||
|
type='CIFAR10Dataset',
|
||
|
root=Path(os.environ['DATA']),
|
||
|
transform_pipeline=[
|
||
|
dict(type='Resize', size=IMG_SIZE),
|
||
|
dict(type='RandomCrop', size=IMG_SIZE, padding=4),
|
||
|
dict(type='RandomHorizontalFlip'),
|
||
|
dict(type='ToTensor'),
|
||
|
dict(type='Normalize',
|
||
|
mean=[0.4914, 0.4822, 0.4465],
|
||
|
std=[0.2023, 0.1994, 0.2010]),
|
||
|
]
|
||
|
),
|
||
|
dataloader=dict(
|
||
|
batch_size=BATCH_SIZE,
|
||
|
pin_memory=True,
|
||
|
num_workers=4,
|
||
|
shuffle=True
|
||
|
)
|
||
|
)
|
||
|
|
||
|
test_data = dict(
|
||
|
dataset=dict(
|
||
|
type='CIFAR10Dataset',
|
||
|
root=Path(os.environ['DATA']),
|
||
|
train=False,
|
||
|
transform_pipeline=[
|
||
|
dict(type='Resize', size=IMG_SIZE),
|
||
|
dict(type='ToTensor'),
|
||
|
dict(type='Normalize',
|
||
|
mean=[0.4914, 0.4822, 0.4465],
|
||
|
std=[0.2023, 0.1994, 0.2010]
|
||
|
),
|
||
|
]
|
||
|
),
|
||
|
dataloader=dict(
|
||
|
batch_size=BATCH_SIZE,
|
||
|
pin_memory=True,
|
||
|
num_workers=4,
|
||
|
shuffle=True
|
||
|
)
|
||
|
)
|
||
|
|
||
|
optimizer = dict(
|
||
|
type='SGD',
|
||
|
lr=0.2,
|
||
|
momentum=0.9,
|
||
|
weight_decay=5e-4
|
||
|
)
|
||
|
|
||
|
loss = dict(
|
||
|
type='CrossEntropyLoss',
|
||
|
)
|
||
|
|
||
|
parallel = dict(
|
||
|
pipeline=dict(size=1),
|
||
|
tensor=dict(size=1, mode=None),
|
||
|
)
|
||
|
|
||
|
hooks = [
|
||
|
dict(type='LogMetricByEpochHook'),
|
||
|
dict(type='AccuracyHook'),
|
||
|
dict(type='LossHook'),
|
||
|
dict(type='TensorboardHook', log_dir='./tfb_logs'),
|
||
|
dict(type='SaveCheckpointHook', interval=5, checkpoint_dir='./ckpt'),
|
||
|
# dict(type='LoadCheckpointHook', epoch=20, checkpoint_dir='./ckpt')
|
||
|
]
|
||
|
|
||
|
# fp16 = dict(
|
||
|
# mode=AMP_TYPE.PARALLEL,
|
||
|
# initial_scale=1
|
||
|
# )
|
||
|
|
||
|
lr_scheduler = dict(
|
||
|
type='CosineAnnealingLR',
|
||
|
T_max=200
|
||
|
)
|
||
|
|
||
|
num_epochs = 200
|