Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

56 lines
2.6 KiB

from typing import List
from torch import Tensor
from torch.distributed import ProcessGroup
def multihead_attention_fw_fp32(layer_id: int, input: Tensor, input_mask: Tensor,
in_proj_weight: Tensor, in_proj_bias: Tensor,
out_proj_weight: Tensor, out_proj_bias: Tensor,
norm_weight: Tensor, norm_bias: Tensor,
training_mode: bool, prelayernorm: bool) -> List[Tensor]:
...
def multihead_attention_fw_fp16(layer_id: int, input: Tensor, input_mask: Tensor,
in_proj_weight: Tensor, in_proj_bias: Tensor,
out_proj_weight: Tensor, out_proj_bias: Tensor,
norm_weight: Tensor, norm_bias: Tensor,
training_mode: bool, prelayernorm: bool) -> List[Tensor]:
...
def multihead_attention_bw_fp32(layer_id: int, grad_dec_output: Tensor,
output: Tensor, input: Tensor,
input_mask: Tensor, in_proj_weight: Tensor,
in_proj_bias: Tensor, out_proj_weight: Tensor,
out_proj_bias: Tensor, norm_weight: Tensor,
norm_bias: Tensor) -> List[Tensor]:
...
def multihead_attention_bw_fp16(layer_id: int, grad_dec_output: Tensor,
output: Tensor, input: Tensor,
input_mask: Tensor, in_proj_weight: Tensor,
in_proj_bias: Tensor, out_proj_weight: Tensor,
out_proj_bias: Tensor, norm_weight: Tensor,
norm_bias: Tensor) -> List[Tensor]:
...
def create_multihead_attention_fp32(layer_id: int, max_batch_tokens: int,
max_seq_len: int, hidden_dim: int, num_heads: int,
attn_prob_dropout_ratio: float,
hidden_dropout_ratio: float,
pre_or_postLayerNorm: bool,
pg: ProcessGroup) -> int:
...
def create_multihead_attention_fp16(layer_id: int, max_batch_tokens: int,
max_seq_len: int, hidden_dim: int, num_heads: int,
attn_prob_dropout_ratio: float,
hidden_dropout_ratio: float,
pre_or_postLayerNorm: bool,
pg: ProcessGroup) -> int:
...