ColossalAI/colossalai/inference/modeling/policy/nopadding_llama.py

102 lines
3.4 KiB
Python
Raw Normal View History

from functools import partial
import torch
from torch.nn import Parameter
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, LlamaRMSNorm
from colossalai.inference.modeling.models.nopadding_llama import (
NopadLlamaAttention,
NopadLlamaMLP,
llama_causal_lm_forward,
llama_decoder_layer_forward,
llama_model_forward,
)
from colossalai.inference.utils import init_to_get_rotary
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
# import colossalai
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
try:
from colossalai.kernel.triton import rms_layernorm
HAS_TRITON_RMSNORM = True
except:
print("you should install triton from https://github.com/openai/triton")
HAS_TRITON_RMSNORM = False
def get_triton_rmsnorm_forward():
if HAS_TRITON_RMSNORM:
def _triton_rmsnorm_forward(
self: LlamaRMSNorm, hidden_states: torch.Tensor, norm_output: torch.Tensor, residual: torch.Tensor = None
):
return rms_layernorm(hidden_states, self.weight.data, self.variance_epsilon, norm_output, residual)
return _triton_rmsnorm_forward
else:
return None
class NoPaddingLlamaModelInferPolicy(LlamaForCausalLMPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
decoder_attribute_replacement = {
"lm_head.weight": Parameter(self.model.lm_head.weight.transpose(0, 1), requires_grad=False),
}
policy[LlamaForCausalLM] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
)
policy[LlamaDecoderLayer] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="mlp",
target_module=NopadLlamaMLP,
),
SubModuleReplacementDescription(
suffix="self_attn",
target_module=NopadLlamaAttention,
),
]
)
self.shard_config._infer()
infer_forward = llama_causal_lm_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaForCausalLM
)
infer_forward = llama_model_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=LlamaModel)
infer_forward = llama_decoder_layer_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaDecoderLayer
)
infer_forward = None
if HAS_TRITON_RMSNORM:
infer_forward = get_triton_rmsnorm_forward()
if infer_forward is not None:
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaRMSNorm
)
return policy
def postprocess(self):
init_to_get_rotary(self.model.model)
return self.model