mirror of https://github.com/hpcaitech/ColossalAI
263 lines
11 KiB
Python
263 lines
11 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
import inspect
|
||
|
from collections.abc import Iterable
|
||
|
|
||
|
from colossalai.registry import *
|
||
|
|
||
|
|
||
|
def build_from_config(module, config: dict):
|
||
|
"""Returns an object of :class:`module` constructed from `config`.
|
||
|
|
||
|
:param module: A python or user-defined class
|
||
|
:type module: class
|
||
|
:param config: A python dict containing information used in the construction
|
||
|
of the return object
|
||
|
:type config: dict
|
||
|
:raises AssertionError: Raises an AssertionError if `module` is not a class
|
||
|
:return: An object of :class:`module`
|
||
|
:rtype: :class:`module`
|
||
|
"""
|
||
|
assert inspect.isclass(module), 'module must be a class'
|
||
|
return module(**config)
|
||
|
|
||
|
|
||
|
def build_from_registry(config, registry: Registry):
|
||
|
"""Returns an object constructed from `config`, the type of the object
|
||
|
is specified by `registry`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.colossalai.context.Config`
|
||
|
:param registry: A registry specifying the type of the return object
|
||
|
:type registry: :class:`Registry`
|
||
|
:raises AssertionError: Raises an AssertionError if `registry` is not an object
|
||
|
of :class:`Registry` or `mod_type` in `config` is not found in `registry`
|
||
|
:raises Exception: Raises an Exception if an error occurred when building
|
||
|
from registry
|
||
|
:return: An object specified by `registry`
|
||
|
:rtype: Python object specified by `registry`
|
||
|
"""
|
||
|
config_ = config.copy() # keep the original config untouched
|
||
|
assert isinstance(
|
||
|
registry, Registry), f'Expected type Registry but got {type(registry)}'
|
||
|
|
||
|
mod_type = config_.pop('type')
|
||
|
assert registry.has(
|
||
|
mod_type), f'{mod_type} is not found in registry {registry.name}'
|
||
|
try:
|
||
|
obj = registry.get_module(mod_type)(**config_)
|
||
|
except Exception as e:
|
||
|
print(
|
||
|
f'An error occurred when building {mod_type} from registry {registry.name}', flush=True)
|
||
|
raise e
|
||
|
|
||
|
return obj
|
||
|
|
||
|
|
||
|
def build_layer(config):
|
||
|
"""Returns a layer object of :class:`nn.Module` constructed from `config`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:return: An object of :class:`nn.Module`
|
||
|
:rtype: :class:`nn.Module`
|
||
|
"""
|
||
|
return build_from_registry(config, LAYERS)
|
||
|
|
||
|
|
||
|
def build_loss(config):
|
||
|
"""Returns a loss function object of :class:`torch.autograd.Function` constructed
|
||
|
from `config`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:return: An object of :class:`torch.autograd.Function`
|
||
|
:rtype: :class:`torch.autograd.Function`
|
||
|
"""
|
||
|
return build_from_registry(config, LOSSES)
|
||
|
|
||
|
|
||
|
def build_model(config):
|
||
|
"""Returns a model object of :class:`nn.Module` constructed from `config`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:return: An object of :class:`nn.Module`
|
||
|
:rtype: :class:`nn.Module`
|
||
|
"""
|
||
|
return build_from_registry(config, MODELS)
|
||
|
|
||
|
|
||
|
def build_dataset(config):
|
||
|
"""Returns a dataset object of :class:`torch.utils.data.Dataset` constructed
|
||
|
from `config`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:return: An object of :class:`torch.utils.data.Dataset`
|
||
|
:rtype: :class:`torch.utils.data.Dataset`
|
||
|
"""
|
||
|
return build_from_registry(config, DATASETS)
|
||
|
|
||
|
|
||
|
def build_optimizer(config, model, params: Iterable = None, need_module=False):
|
||
|
"""Returns an optimizer object of :class:`torch.optim.Optimizer` constructed from `config`,
|
||
|
'model' and 'params'.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:param model: A model containing parameters for the optimizer
|
||
|
:type model: :class:`nn.Module`
|
||
|
:param params: A dict containing parameters for the optimizer
|
||
|
:type params: dict, optional
|
||
|
:param need_module: Indicates whether the optimizer needs a module
|
||
|
:type params: bool, optional
|
||
|
:raises AssertionError: Raises an AssertionError if both `model` and `params` are None
|
||
|
:return: An object of :class:`torch.optim.Optimizer`
|
||
|
:rtype: :class:`torch.optim.Optimizer`
|
||
|
"""
|
||
|
assert model is not None or params is not None, 'arguments model and params can not both be None'
|
||
|
if need_module:
|
||
|
config['module'] = model
|
||
|
elif model is not None:
|
||
|
config['params'] = model.parameters()
|
||
|
elif params is not None:
|
||
|
config['params'] = params
|
||
|
|
||
|
return build_from_registry(config, OPTIMIZERS)
|
||
|
|
||
|
|
||
|
def build_gradient_handler(config, model, optimizer):
|
||
|
"""Returns a gradient handler object of :class:`BaseGradientHandler` constructed from `config`,
|
||
|
`model` and `optimizer`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:param model: A model containing parameters for the gradient handler
|
||
|
:type model: :class:`nn.Module`
|
||
|
:param optimizer: An optimizer object containing parameters for the gradient handler
|
||
|
:type optimizer: :class:`torch.optim.Optimizer`
|
||
|
:return: An object of :class:`BaseGradientHandler`
|
||
|
:rtype: :class:`BaseGradientHandler`
|
||
|
"""
|
||
|
config_ = config.copy()
|
||
|
mod_type = config_.pop('type')
|
||
|
return GRADIENT_HANDLER.get_module(mod_type)(model, optimizer, **config_)
|
||
|
|
||
|
|
||
|
def build_hooks(config, trainer):
|
||
|
"""Returns a hook object of :class:`BaseHook` constructed from `config` and `trainer`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:param trainer: A :class:`Trainer` object containing parameters for the hook
|
||
|
:type trainer: :class:`Trainer`
|
||
|
:return: An object of :class:`BaseHook`
|
||
|
:rtype: :class:`BaseHook`
|
||
|
"""
|
||
|
config['trainer'] = trainer
|
||
|
return build_from_registry(config, HOOKS)
|
||
|
|
||
|
|
||
|
def build_transform(config):
|
||
|
"""Returns a transformation object of :class:`torchvision.transforms` constructed
|
||
|
from `config`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:return: An object of :class:`torchvision.transforms`
|
||
|
:rtype: :class:`torchvision.transforms`
|
||
|
"""
|
||
|
return build_from_registry(config, TRANSFORMS)
|
||
|
|
||
|
|
||
|
def build_pipe_alloc_policy(config):
|
||
|
"""Returns a pipeline allocation policy object constructed from `config`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:return: A pipeline allocation policy object
|
||
|
:rtype:
|
||
|
"""
|
||
|
return build_from_registry(config, PIPE_ALLOC_POLICY)
|
||
|
|
||
|
|
||
|
def build_data_sampler(config, dataset):
|
||
|
"""Returns a data sampler object of :class:`colossalai.nn.data.sampler.BaseSampler`
|
||
|
constructed from `config`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:param dataset: An object of :class:`torch.utils.data.Dataset` containing information
|
||
|
used in the construction of the return object
|
||
|
:type dataset: :class:`torch.utils.data.Dataset`
|
||
|
:return: An object of :class:`colossalai.nn.data.sampler.BaseSampler`
|
||
|
:rtype: :class:`colossalai.nn.data.sampler.BaseSampler`
|
||
|
"""
|
||
|
config_ = config.copy()
|
||
|
mod_type = config_.pop('type')
|
||
|
return SAMPLERS.get_module(mod_type)(dataset, **config_)
|
||
|
|
||
|
|
||
|
def build_optimizer_wrapper(config, optimizer, model=None):
|
||
|
"""Returns an optimizer wrapper object of :class:`torch.optim.Optimizer` constructed
|
||
|
from `config`, `model` and `optimizer`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:param optimizer: An optimizer object containing parameters for the gradient handler
|
||
|
:type optimizer: :class:`torch.optim.Optimizer`
|
||
|
:param model: A model containing parameters for the gradient handler
|
||
|
:type model: :class:`nn.Module`, optional
|
||
|
:return: An object of :class:`torch.optim.Optimizer`
|
||
|
:rtype: :class:`torch.optim.Optimizer`
|
||
|
"""
|
||
|
config_ = config.copy()
|
||
|
mod_type = config_.pop('type')
|
||
|
|
||
|
# LSG: special treatment for zeor level 3
|
||
|
if mod_type == 'ZeroRedundancyOptimizer_Level_3':
|
||
|
return OPTIMIZER_WRAPPERS.get_module(mod_type)(model, optimizer, **config_)
|
||
|
else:
|
||
|
return OPTIMIZER_WRAPPERS.get_module(mod_type)(optimizer, **config_)
|
||
|
|
||
|
|
||
|
def build_lr_scheduler(config, optimizer, total_steps, num_steps_per_epoch):
|
||
|
"""Returns a learning rate scheduler object of :class:`torch.optim.lr_scheduler`
|
||
|
constructed from `config`, `optimizer`, `total_steps` and `num_steps_per_epoch`.
|
||
|
|
||
|
:param config: A python dict or a :class:`colossalai.context.Config` object
|
||
|
containing information used in the construction of the return object
|
||
|
:type config: dict or :class:`colossalai.context.Config`
|
||
|
:param optimizer: An optimizer object containing parameters for the learning rate
|
||
|
scheduler
|
||
|
:type optimizer: :class:`torch.optim.Optimizer`
|
||
|
:param total_steps: Number of total steps of the learning rate scheduler
|
||
|
:type total_steps: int
|
||
|
:param num_steps_per_epoch: number of steps per epoch of the learning rate scheduler
|
||
|
:type num_steps_per_epoch: int
|
||
|
:return: An object of :class:`torch.optim.lr_scheduler`
|
||
|
:rtype: :class:`torch.optim.lr_scheduler`
|
||
|
"""
|
||
|
config_ = config.copy()
|
||
|
mod_type = config_.pop('type')
|
||
|
# warmup epochs will overwrite warmup steps
|
||
|
if 'warmup_epochs' in config_:
|
||
|
warmup_epochs = config_.pop('warmup_epochs')
|
||
|
config_['warmup_steps'] = int(num_steps_per_epoch * warmup_epochs)
|
||
|
return LR_SCHEDULERS.get_module(mod_type)(optimizer, total_steps, num_steps_per_epoch=num_steps_per_epoch,
|
||
|
**config_)
|