|
|
|
import argparse
|
|
|
|
from copy import deepcopy
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
|
|
|
from chatgpt.models.base import RewardModel
|
|
|
|
from chatgpt.models.opt import OPTActor, OPTCritic
|
|
|
|
from chatgpt.trainer import PPOTrainer
|
|
|
|
from chatgpt.trainer.callbacks import PerformanceEvaluator
|
|
|
|
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, Strategy
|
|
|
|
from torch.optim import Adam
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
from transformers.models.opt.configuration_opt import OPTConfig
|
|
|
|
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
|
|
|
|
|
|
|
|
def get_model_numel(model: nn.Module, strategy: Strategy) -> int:
|
|
|
|
numel = sum(p.numel() for p in model.parameters())
|
|
|
|
if isinstance(strategy, ColossalAIStrategy) and strategy.stage == 3 and strategy.shard_init:
|
|
|
|
numel *= dist.get_world_size()
|
|
|
|
return numel
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess_batch(samples) -> dict:
|
|
|
|
input_ids = torch.stack(samples)
|
|
|
|
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
|
|
|
|
return {'input_ids': input_ids, 'attention_mask': attention_mask}
|
|
|
|
|
|
|
|
|
|
|
|
def print_rank_0(*args, **kwargs) -> None:
|
|
|
|
if dist.get_rank() == 0:
|
|
|
|
print(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def print_model_numel(model_dict: dict) -> None:
|
|
|
|
B = 1024**3
|
|
|
|
M = 1024**2
|
|
|
|
K = 1024
|
|
|
|
outputs = ''
|
|
|
|
for name, numel in model_dict.items():
|
|
|
|
outputs += f'{name}: '
|
|
|
|
if numel >= B:
|
|
|
|
outputs += f'{numel / B:.2f} B\n'
|
|
|
|
elif numel >= M:
|
|
|
|
outputs += f'{numel / M:.2f} M\n'
|
|
|
|
elif numel >= K:
|
|
|
|
outputs += f'{numel / K:.2f} K\n'
|
|
|
|
else:
|
|
|
|
outputs += f'{numel}\n'
|
|
|
|
print_rank_0(outputs)
|
|
|
|
|
|
|
|
|
|
|
|
def get_gpt_config(model_name: str) -> OPTConfig:
|
|
|
|
model_map = {
|
|
|
|
'125m': OPTConfig.from_pretrained('facebook/opt-125m'),
|
|
|
|
'350m': OPTConfig(hidden_size=1024, ffn_dim=4096, num_hidden_layers=24, num_attention_heads=16),
|
|
|
|
'700m': OPTConfig(hidden_size=1280, ffn_dim=5120, num_hidden_layers=36, num_attention_heads=20),
|
|
|
|
'1.3b': OPTConfig.from_pretrained('facebook/opt-1.3b'),
|
|
|
|
'2.7b': OPTConfig.from_pretrained('facebook/opt-2.7b'),
|
|
|
|
'3.5b': OPTConfig(hidden_size=3072, ffn_dim=12288, num_hidden_layers=32, num_attention_heads=32),
|
|
|
|
'5.5b': OPTConfig(hidden_size=3840, ffn_dim=15360, num_hidden_layers=32, num_attention_heads=32),
|
|
|
|
'6.7b': OPTConfig.from_pretrained('facebook/opt-6.7b'),
|
|
|
|
'10b': OPTConfig(hidden_size=5120, ffn_dim=20480, num_hidden_layers=32, num_attention_heads=32),
|
|
|
|
'13b': OPTConfig.from_pretrained('facebook/opt-13b'),
|
|
|
|
}
|
|
|
|
try:
|
|
|
|
return model_map[model_name]
|
|
|
|
except KeyError:
|
|
|
|
raise ValueError(f'Unknown model "{model_name}"')
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
if args.strategy == 'ddp':
|
|
|
|
strategy = DDPStrategy()
|
|
|
|
elif args.strategy == 'colossalai_gemini':
|
|
|
|
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
|
|
|
|
elif args.strategy == 'colossalai_gemini_cpu':
|
|
|
|
strategy = ColossalAIStrategy(stage=3, placement_policy='cpu', initial_scale=2**5)
|
|
|
|
elif args.strategy == 'colossalai_zero2':
|
|
|
|
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
|
|
|
|
elif args.strategy == 'colossalai_zero2_cpu':
|
|
|
|
strategy = ColossalAIStrategy(stage=2, placement_policy='cpu')
|
|
|
|
elif args.strategy == 'colossalai_zero1':
|
|
|
|
strategy = ColossalAIStrategy(stage=1, placement_policy='cuda')
|
|
|
|
elif args.strategy == 'colossalai_zero1_cpu':
|
|
|
|
strategy = ColossalAIStrategy(stage=1, placement_policy='cpu')
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Unsupported strategy "{args.strategy}"')
|
|
|
|
|
|
|
|
torch.cuda.set_per_process_memory_fraction(args.cuda_mem_frac)
|
|
|
|
|
|
|
|
model_config = get_gpt_config(args.model)
|
|
|
|
|
|
|
|
with strategy.model_init_context():
|
|
|
|
actor = OPTActor(config=model_config, lora_rank=args.lora_rank).cuda()
|
|
|
|
critic = OPTCritic(config=model_config, lora_rank=args.lora_rank).cuda()
|
|
|
|
|
|
|
|
initial_model = deepcopy(actor).cuda()
|
|
|
|
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()
|
|
|
|
|
|
|
|
actor_numel = get_model_numel(actor, strategy)
|
|
|
|
critic_numel = get_model_numel(critic, strategy)
|
|
|
|
initial_model_numel = get_model_numel(initial_model, strategy)
|
|
|
|
reward_model_numel = get_model_numel(reward_model, strategy)
|
|
|
|
print_model_numel({
|
|
|
|
'Actor': actor_numel,
|
|
|
|
'Critic': critic_numel,
|
|
|
|
'Initial model': initial_model_numel,
|
|
|
|
'Reward model': reward_model_numel
|
|
|
|
})
|
|
|
|
performance_evaluator = PerformanceEvaluator(actor_numel,
|
|
|
|
critic_numel,
|
|
|
|
initial_model_numel,
|
|
|
|
reward_model_numel,
|
|
|
|
enable_grad_checkpoint=False,
|
|
|
|
ignore_episodes=1)
|
|
|
|
|
|
|
|
if args.strategy.startswith('colossalai'):
|
|
|
|
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
|
|
|
|
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
|
|
|
|
else:
|
|
|
|
actor_optim = Adam(actor.parameters(), lr=5e-6)
|
|
|
|
critic_optim = Adam(critic.parameters(), lr=5e-6)
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-350m')
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
|
|
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare(
|
|
|
|
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
|
|
|
|
|
|
|
|
trainer = PPOTrainer(strategy,
|
|
|
|
actor,
|
|
|
|
critic,
|
|
|
|
reward_model,
|
|
|
|
initial_model,
|
|
|
|
actor_optim,
|
|
|
|
critic_optim,
|
|
|
|
max_epochs=args.max_epochs,
|
|
|
|
train_batch_size=args.train_batch_size,
|
|
|
|
experience_batch_size=args.experience_batch_size,
|
|
|
|
tokenizer=preprocess_batch,
|
|
|
|
max_length=512,
|
|
|
|
do_sample=True,
|
|
|
|
temperature=1.0,
|
|
|
|
top_k=50,
|
|
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
|
|
callbacks=[performance_evaluator])
|
|
|
|
|
|
|
|
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
|
|
|
|
trainer.fit(random_prompts,
|
|
|
|
num_episodes=args.num_episodes,
|
|
|
|
max_timesteps=args.max_timesteps,
|
|
|
|
update_timesteps=args.update_timesteps)
|
|
|
|
|
|
|
|
print_rank_0(f'Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB')
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--model', default='125m')
|
|
|
|
parser.add_argument('--strategy',
|
|
|
|
choices=[
|
|
|
|
'ddp', 'colossalai_gemini', 'colossalai_gemini_cpu', 'colossalai_zero2',
|
|
|
|
'colossalai_zero2_cpu', 'colossalai_zero1', 'colossalai_zero1_cpu'
|
|
|
|
],
|
|
|
|
default='ddp')
|
|
|
|
parser.add_argument('--num_episodes', type=int, default=3)
|
|
|
|
parser.add_argument('--max_timesteps', type=int, default=8)
|
|
|
|
parser.add_argument('--update_timesteps', type=int, default=8)
|
|
|
|
parser.add_argument('--max_epochs', type=int, default=3)
|
|
|
|
parser.add_argument('--train_batch_size', type=int, default=8)
|
|
|
|
parser.add_argument('--experience_batch_size', type=int, default=8)
|
|
|
|
parser.add_argument('--lora_rank', type=int, default=4)
|
|
|
|
parser.add_argument('--cuda_mem_frac', type=float, default=1.0)
|
|
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|