ColossalAI/tests/test_tensor/test_linear_tp.py

98 lines
3.2 KiB
Python
Raw Normal View History

2022-04-24 05:43:12 +00:00
import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.tensor import ColoTensor
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
2022-04-24 05:43:12 +00:00
from _utils import check_equal, replace_parameter_add_grad, broadcast_tensor_chunk
2022-04-24 05:43:12 +00:00
2022-04-24 05:43:12 +00:00
def run_linear_tp1d_row_test():
device = get_current_device()
dtype = torch.float32
DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D)
in_features = 4
out_features = 5
local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
layer_master = torch.nn.Linear(in_features, out_features)
layer = torch.nn.Linear(in_features, out_features)
A_shape = (2, in_features)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
A = broadcast_tensor_chunk(A_master, chunk_size=1)
A.requires_grad = True
W_shape = (out_features, in_features)
W_master = torch.randn(W_shape, dtype=dtype, device=device)
W = broadcast_tensor_chunk(W_master, chunk_size=1)
2022-04-24 05:43:12 +00:00
W.requires_grad = True
B_shape = (out_features)
B_master = torch.randn(B_shape, dtype=dtype, device=device)
B = broadcast_tensor_chunk(B_master, chunk_size=1)
B.requires_grad = True
# replace the torch nn.Parameters with ColoTensor
sharded_weight = ColoTensor.init_from_torch_tensor(W)
parallel_action_list = [
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow, parallel_mode=ParallelMode.PARALLEL_1D)
]
spec = TensorSpec(parallel_action_list)
sharded_weight.set_spec(spec=spec) # reshard
2022-04-24 05:43:12 +00:00
sharded_bias = ColoTensor.init_from_torch_tensor(B)
replace_parameter_add_grad(layer, sharded_weight, sharded_bias)
out = layer(A)
replace_parameter_add_grad(layer_master, W_master, B_master)
A_master.requires_grad = True
#C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master
C_master = layer_master(A_master)
C = C_master.clone()
check_equal(out, C)
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
grad = broadcast_tensor_chunk(grad_master, chunk_size=1)
out.backward(grad)
grad_master = grad_master.clone()
C_master.backward(grad_master)
W_grad = W_master.grad
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[local_rank]
check_equal(W_grad, layer.weight.grad)
B_grad = B_master.grad
check_equal(B_grad, layer.bias.grad)
2022-04-24 05:43:12 +00:00
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_linear_tp1d_row_test()
@pytest.mark.dist
@parameterize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_linear_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_linear_1d()