ColossalAI/examples/tutorial/new_api/torch_ddp/README.md

45 lines
1.4 KiB
Markdown
Raw Normal View History

# Distributed Data Parallel
## 🚀 Quick Start
This example provides a training script and an evaluation script. The training script provides an example of training ResNet on CIFAR10 dataset from scratch.
- Training Arguments
- `-r`, `--resume`: resume from checkpoint file path
- `-c`, `--checkpoint`: the folder to save checkpoints
- `-i`, `--interval`: epoch interval to save checkpoints
- `-f`, `--fp16`: use fp16
- Eval Arguments
- `-e`, `--epoch`: select the epoch to evaluate
- `-c`, `--checkpoint`: the folder where checkpoints are found
### Train
```bash
# train with torch DDP with fp32
colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp32
# train with torch DDP with mixed precision training
colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp16 --fp16
```
### Eval
```bash
# evaluate fp32 training
python eval.py -c ./ckpt-fp32 -e 80
# evaluate fp16 mixed precision training
python eval.py -c ./ckpt-fp16 -e 80
```
Expected accuracy performance will be:
| Model | Single-GPU Baseline FP32 | Booster DDP with FP32 | Booster DDP with FP16 |
| --------- | ------------------------ | --------------------- | --------------------- |
| ResNet-18 | 85.85% | 85.03% | 85.12% |
**Note: the baseline is adapted from the [script](https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/) to use `torchvision.models.resnet18`**