ColossalAI/applications/ChatGPT/chatgpt/trainer/ppo.py

105 lines
5.3 KiB
Python
Raw Normal View History

2023-02-14 14:17:25 +00:00
from typing import Any, Callable, Dict, List, Optional
import torch.nn as nn
from chatgpt.experience_maker import Experience, NaiveExperienceMaker
from chatgpt.nn import Actor, Critic, PolicyLoss, ValueLoss
from chatgpt.replay_buffer import NaiveReplayBuffer
from torch.optim import Optimizer
from .base import Trainer
from .callbacks import Callback
from .strategies import Strategy
class PPOTrainer(Trainer):
"""
Trainer for PPO algorithm.
Args:
strategy (Strategy): the strategy to use for training
actor (Actor): the actor model in ppo algorithm
critic (Critic): the critic model in ppo algorithm
reward_model (nn.Module): the reward model in rlhf algorithm to make reward of sentences
initial_model (Actor): the initial model in rlhf algorithm to generate reference logits to limit the update of actor
actor_optim (Optimizer): the optimizer to use for actor model
critic_optim (Optimizer): the optimizer to use for critic model
kl_coef (float, defaults to 0.1): the coefficient of kl divergence loss
train_batch_size (int, defaults to 8): the batch size to use for training
buffer_limit (int, defaults to 0): the max_size limitaiton of replay buffer
buffer_cpu_offload (bool, defaults to True): whether to offload replay buffer to cpu
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
value_clip (float, defaults to 0.4): the clip coefficient of value loss
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
max_epochs (int, defaults to 1): the number of epochs of training process
tokenier (Callable, optional): the tokenizer to use for tokenizing the input
sample_replay_buffer (bool, defaults to False): whether to sample from replay buffer
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
callbacks (List[Callback], defaults to []): the callbacks to call during training process
generate_kwargs (dict, optional): the kwargs to use while model generating
"""
def __init__(self,
strategy: Strategy,
actor: Actor,
critic: Critic,
reward_model: nn.Module,
initial_model: Actor,
actor_optim: Optimizer,
critic_optim: Optimizer,
kl_coef: float = 0.1,
train_batch_size: int = 8,
buffer_limit: int = 0,
buffer_cpu_offload: bool = True,
eps_clip: float = 0.2,
value_clip: float = 0.4,
experience_batch_size: int = 8,
max_epochs: int = 1,
tokenizer: Optional[Callable[[Any], dict]] = None,
sample_replay_buffer: bool = False,
dataloader_pin_memory: bool = True,
callbacks: List[Callback] = [],
**generate_kwargs) -> None:
actor = Actor(strategy.setup_model(actor.model))
critic = strategy.setup_model(critic)
reward_model = strategy.setup_model(reward_model)
initial_model = Actor(strategy.setup_model(initial_model.model))
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, kl_coef)
replay_buffer = NaiveReplayBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
super().__init__(strategy, experience_maker, replay_buffer, experience_batch_size, max_epochs, tokenizer,
sample_replay_buffer, dataloader_pin_memory, callbacks, **generate_kwargs)
self.actor = actor
self.critic = critic
self.actor_loss_fn = PolicyLoss(eps_clip)
self.critic_loss_fn = ValueLoss(value_clip)
self.actor_optim = strategy.setup_optimizer(actor_optim, self.actor.model)
self.critic_optim = strategy.setup_optimizer(critic_optim, self.critic)
def training_step(self, experience: Experience) -> Dict[str, float]:
self.actor.train()
self.critic.train()
num_actions = experience.action_mask.size(1)
action_log_probs = self.actor(experience.sequences, num_actions, attention_mask=experience.attention_mask)
actor_loss = self.actor_loss_fn(action_log_probs,
experience.action_log_probs,
experience.advantages,
action_mask=experience.action_mask)
self.strategy.backward(actor_loss, self.actor, self.actor_optim)
self.strategy.optimizer_step(self.actor_optim)
self.actor_optim.zero_grad()
values = self.critic(experience.sequences,
action_mask=experience.action_mask,
attention_mask=experience.attention_mask)
critic_loss = self.critic_loss_fn(values,
experience.values,
experience.reward,
action_mask=experience.action_mask)
self.strategy.backward(critic_loss, self.critic, self.critic_optim)
self.strategy.optimizer_step(self.critic_optim)
self.critic_optim.zero_grad()
return {'actor_loss': actor_loss.item(), 'critic_loss': critic_loss.item()}