ColossalAI/colossalai/_analyzer/fx/passes/graph_profile.py

356 lines
12 KiB
Python
Raw Normal View History

from typing import Any, Dict, Iterator, List, Optional, Tuple
import torch
import torch.fx
from torch.autograd.profiler_util import _format_memory
from torch.fx import GraphModule
from torch.fx.node import Argument, Node, Target
from colossalai._analyzer._subclasses import flop_count
from colossalai._analyzer.fx.node_util import MetaInfo
def _format_flops(flops: float) -> str:
"""Returns a formatted FLOP size string"""
if flops > 1e12:
return f"{flops / 1e12:.2f} TFLOPs"
elif flops > 1e9:
return f"{flops / 1e9:.2f} GFLOPs"
elif flops > 1e6:
return f"{flops / 1e6:.2f} MFLOPs"
elif flops > 1e3:
return f"{flops / 1e3:.2f} kFLOPs"
return f"{flops} FLOPs"
def _denormalize_tuple(t: Tuple[int, ...]) -> Tuple[int, ...]:
return t[0] if len(t) == 1 else t
def _normalize_tuple(x):
if not isinstance(x, tuple):
return (x,)
return x
def _current_device(module):
return next(module.parameters()).device
class GraphProfiler(torch.fx.Interpreter):
"""
Fetch shape argument from ``ShapeProp`` without re-executing
the ``GraphModule`` from scratch.
"""
_profileable = [
"call_function",
"call_module",
"call_method",
]
def __init__(self, module: GraphModule, garbage_collect_values: bool = True):
super().__init__(module, garbage_collect_values)
def run(self, *args, initial_env: Optional[Dict[Node, Any]] = None, enable_io_processing: bool = True) -> Any:
"""
Run `module` via interpretation and return the result.
Args:
*args: The arguments to the Module to run, in positional order
initial_env (Optional[Dict[Node, Any]]): An optional starting environment for execution.
This is a dict mapping `Node` to any value. This can be used, for example, to
pre-populate results for certain `Nodes` so as to do only partial evaluation within
the interpreter.
enable_io_processing (bool): If true, we process the inputs and outputs with graph's process_inputs and
process_outputs function first before using them.
Returns:
Any: The value returned from executing the Module
"""
self.env = initial_env if initial_env else {}
# Positional function args are consumed left-to-right by
# `placeholder` nodes. Use an iterator to keep track of
# position and extract those values.
if enable_io_processing:
args = self.module.graph.process_inputs(*args)
self.args_iter: Iterator[Any] = iter(args)
for node in self.module.graph.nodes:
self.run_node(node) # No need to store.
if self.garbage_collect_values:
for to_delete in self.user_to_last_uses.get(node, []):
del self.env[to_delete]
if node.op == "output":
output_val = self.env[node]
return self.module.graph.process_outputs(output_val) if enable_io_processing else output_val
def fetch_initial_env(self, device=None) -> Dict[Node, Any]:
"""
Fetch ``initial_env`` for execution. This is because ``ShapeProp``
has already attached outputs of each ``Node`` to its ``MetaInfo``.
Args:
device (torch.device): The device to place the execution, default to ``None``
Returns:
Dict[Node, Any]: The initial environment for execution
"""
initial_env = {}
for n in self.module.graph.nodes:
initial_env[n] = _denormalize_tuple(MetaInfo(n).outputs)
return initial_env
def propagate(self, *args, device=None):
"""
Run `module` via interpretation and profile the execution
of each ``Node``.
Args:
*args (Tensor): The sample input, not used
device (torch.device): The device to place the execution, default to ``None``
Returns:
Any: The value returned from executing the Module
"""
initial_env = self.fetch_initial_env(device)
return self.run(initial_env=initial_env)
def summary(self) -> str:
"""
Summarizes the profiled statistics of the `GraphModule` in
tabular format. Note that this API requires the ``tabulate`` module
to be installed.
Returns:
str: The summary of the profiled statistics
"""
# https://github.com/pytorch/pytorch/blob/master/torch/fx/graph.py
try:
from tabulate import tabulate
except ImportError:
print(
"`summary` relies on the library `tabulate`, "
"which could not be found on this machine. Run `pip "
"install tabulate` to install the library."
)
# Build up a list of summary information for each node
node_summaries: List[List[Any]] = []
last_n_info = None
for node in self.module.graph.nodes:
node: Node
n_info = MetaInfo(node)
last_n_info = last_n_info or n_info
node_summaries.append(
[
node.op,
str(node),
_format_memory(n_info.accumulate_size),
_format_memory(n_info.accumulate_size - last_n_info.accumulate_size),
_format_memory(n_info.output_size),
_format_memory(n_info.temp_size),
_format_memory(n_info.param_size),
_format_memory(n_info.backward_size),
_format_flops(n_info.fwd_flop),
_format_flops(n_info.bwd_flop),
]
)
last_n_info = n_info
# Use the ``tabulate`` library to create a well-formatted table
# presenting our summary information
headers: List[str] = [
"Op type",
"Op",
"Accumulate size",
"Incremental size",
"Output size",
"Temp size",
"Param size",
"Backward size",
"Fwd FLOPs",
"Bwd FLOPs",
]
return tabulate(node_summaries, headers=headers, stralign="right")
class CommunicationProfiler(GraphProfiler):
"""
TODO(lyl): Add this for all comm nodes
"""
def __init__(self, module: GraphModule, garbage_collect_values: bool = True):
raise NotImplementedError()
class FlopProfiler(GraphProfiler):
"""
Execute an FX graph Node-by-Node and record the meta data of the result
into the corresponding node.
Usage:
>>> model = MyModule()
>>> x = torch.rand(10, 10)
>>> gm = colossalai.fx.symbolic_trace(model, meta_args = {'x': x}})
>>> shape_interp = ShapeProp(gm) # must do this first
>>> shape_interp.propagate(x)
>>> profiler = FlopProfiler(gm)
>>> profiler.propagate(x)
Args:
module (GraphModule): The module to be executed
Hints:
If you want to add a new flop count rule, you can first
check the existing files in ``../_subclasses/flop_tensor.py``.
If your flop count rules are incompatible with the existing
ones, you can do so by adding a new method to this class
with the ``@register_flop_count_impl`` decorator. The method
should take (*args, **kwargs) instance as its input and
generate flop count for both forward and backward as its
output.
For example, if you want to add a flop count rule for
``my_fn``, which is a hand-written operand not detected by
PyTorch, you can do so by adding a new method to this
class with the ``@register_flop_count_impl`` decorator:
>>> @register_flop_count_impl(my_fn)
>>> def my_fn_flop_count_impl(*args, **kwargs):
>>> return 0, 0
"""
_custom_flop_count_impl = {}
def run_node(self, n: torch.fx.Node) -> Any:
"""
Run a specific node ``n`` and profile its execution time and memory usage.
Calls into call_function, call_method, and call_module only.
Args:
n (Node): The Node to profile
Returns:
Any: The output of the node
Raises:
RuntimeError: If the node is not profileable.
"""
args, kwargs = self.fetch_args_kwargs_from_env(n)
n_info = MetaInfo(n)
if n.op in self._profileable:
try:
(
n_info.fwd_flop,
n_info.bwd_flop,
) = getattr(
self, n.op
)(n.target, args, kwargs)
except Exception as e:
raise RuntimeError(
f"Error {str(e)} occurred when profiling node {n}, node.target = {n.target}. "
f"Please refer to function's docstring to register the relevant profile_impl for this node!"
) from e
# retain the autograd graph
for param in self.module.parameters():
param.grad = None
return _denormalize_tuple(n_info.outputs)
def call_function(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_function`` node and return the profiling result.
Dispatch to ``_custom_flop_count_impl`` if ``call_function`` should be
profiled in a user-defined behavior.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
flop_count (Tuple[int]): (fwd_flop, bwd_flop)
"""
assert not isinstance(target, str)
# Dispatch the impl for profiling, default will be ``flop_count``
if target in self._custom_flop_count_impl:
return self._custom_flop_count_impl[target](*args, **kwargs)
else:
return flop_count(target, *args, **kwargs)
def call_method(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_method`` node and return the profiling result.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
flop_count (Tuple[int]): (fwd_flop, bwd_flop)
"""
# Execute the method and return the result
assert isinstance(target, str)
return flop_count(getattr(torch.Tensor, target), *args, **kwargs)
def call_module(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_module`` node and return the profiling result.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
flop_count (Tuple[int]): (fwd_flop, bwd_flop)
"""
# Retrieve executed args and kwargs values from the environment
# Execute the method and return the result
assert isinstance(target, str)
submod = self.fetch_attr(target)
return flop_count(submod, *args, **kwargs)
def graph_profile_pass(module: GraphModule, *args, verbose=False) -> GraphModule:
"""
Run ``module`` via interpretation and profile the execution
of each ``Node``.
Args:
module (GraphModule): The GraphModule to profile
*args (Any): The sample input, not used
verbose (bool): Whether to print the profiling summary
Returns:
GraphModule: The same GraphModule with profiling information
"""
for profiler_cls in (
FlopProfiler,
# CommunicationProfiler, # TODO: add communication profiling
):
profiler = profiler_cls(module)
profiler.propagate(*args, device=_current_device(module))
if verbose:
print(profiler.summary())
return module