mirror of https://github.com/hpcaitech/ColossalAI
30 lines
1.1 KiB
Python
30 lines
1.1 KiB
Python
|
import operator
|
||
|
from typing import List, Tuple
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
|
||
|
from colossalai.fx.profiler.memory_utils import activation_size
|
||
|
from colossalai.fx.profiler.opcount import flop_mapping
|
||
|
|
||
|
from ..registry import meta_register
|
||
|
|
||
|
__all__ = ["non_spmd_meta_info"]
|
||
|
|
||
|
|
||
|
@meta_register.register(torch.Size)
|
||
|
@meta_register.register(torch.Tensor.size)
|
||
|
@meta_register.register(torch.finfo)
|
||
|
@meta_register.register(operator.le)
|
||
|
def non_spmd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||
|
"""Non-SPMD node meta information generator
|
||
|
Those nodes will not be handled by SPMD solver, so we just return all zero meta information for it
|
||
|
|
||
|
Returns:
|
||
|
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||
|
"""
|
||
|
compute_cost = TrainCycleItem(fwd=0, bwd=0, total=0)
|
||
|
memory_cost = TrainCycleItem(fwd=MemoryCost(), bwd=MemoryCost(), total=MemoryCost())
|
||
|
fwd_in, fwd_buffer, fwd_out = [], [], []
|
||
|
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
|