mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
5.5 KiB
178 lines
5.5 KiB
1 year ago
|
import contextlib
|
||
|
from typing import Any, Callable, Dict, List
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from colossalai.moe.manager import MOE_MANAGER
|
||
|
from colossalai.tensor.moe_tensor.api import get_dp_group, get_dp_group_ranks, get_ep_size, is_moe_tensor
|
||
|
from colossalai.utils import get_current_device
|
||
|
|
||
|
|
||
|
class ForceFP32Parameter(torch.nn.Parameter):
|
||
|
|
||
|
def half(self, memory_format=None):
|
||
|
return self.data.clone()
|
||
|
|
||
|
|
||
|
class NormalNoiseGenerator:
|
||
|
"""Generates a random noisy mask for logits tensor.
|
||
|
|
||
|
All noise is generated from a normal distribution :math:`(0, 1 / E^2)`, where
|
||
|
`E = the number of experts`.
|
||
|
|
||
|
Args:
|
||
|
num_experts (int): The number of experts.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, num_experts: int):
|
||
|
self.normal = torch.distributions.normal.Normal(
|
||
|
loc=torch.tensor(0.0, device=get_current_device()),
|
||
|
scale=torch.tensor(1.0 / num_experts**2, device=get_current_device()),
|
||
|
).rsample
|
||
|
|
||
|
def __call__(self, inputs: torch.Tensor):
|
||
|
noisy = self.normal(inputs.shape)
|
||
|
return inputs + noisy
|
||
|
|
||
|
|
||
|
class UniformNoiseGenerator:
|
||
|
"""Generates a random noisy mask for logits tensor.
|
||
|
copied from mesh tensorflow:
|
||
|
Multiply values by a random number between :math:`1-epsilon` and :math:`1+epsilon`.
|
||
|
Makes models more resilient to rounding errors introduced by bfloat16.
|
||
|
This seems particularly important for logits.
|
||
|
|
||
|
Args:
|
||
|
eps (float, optional): Epsilon in generator, defaults 1e-2.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, eps: float = 1e-2):
|
||
|
self.uniform = torch.distributions.uniform.Uniform(
|
||
|
low=torch.tensor(1.0 - eps, device=get_current_device()),
|
||
|
high=torch.tensor(1.0 + eps, device=get_current_device()),
|
||
|
).rsample
|
||
|
|
||
|
def __call__(self, inputs: torch.Tensor):
|
||
|
noisy = self.uniform(inputs.shape)
|
||
|
return inputs * noisy
|
||
|
|
||
|
|
||
|
def autocast_softmax(logit: torch.Tensor, dim: int):
|
||
|
return F.softmax(logit, dim=dim, detype=torch.float32)
|
||
|
|
||
|
|
||
|
def get_noise_generator(noise_type: str, num_experts: int) -> Callable:
|
||
|
if noise_type is None:
|
||
|
return None
|
||
|
elif noise_type == "Jitter":
|
||
|
noisy_func = UniformNoiseGenerator()
|
||
|
elif noise_type == "Gaussian":
|
||
|
noisy_func = NormalNoiseGenerator(num_experts)
|
||
|
else:
|
||
|
raise NotImplementedError("Unsupported input noisy policy")
|
||
|
return noisy_func
|
||
|
|
||
|
|
||
|
def get_activation(act: str) -> Callable:
|
||
|
if act is None or act == "relu":
|
||
|
return torch.nn.ReLU()
|
||
|
elif act == "gelu":
|
||
|
return torch.nn.GELU()
|
||
|
elif act == "swiglu":
|
||
|
return SwiGLU
|
||
|
else:
|
||
|
raise NotImplementedError("Unsupported activation function")
|
||
|
|
||
|
|
||
|
def SwiGLU(x):
|
||
|
"""Gated linear unit activation function.
|
||
|
Args:
|
||
|
x : input array
|
||
|
axis: the axis along which the split should be computed (default: -1)
|
||
|
"""
|
||
|
size = x.shape[-1]
|
||
|
assert size % 2 == 0, "axis size must be divisible by 2"
|
||
|
x1, x2 = torch.split(x, size // 2, -1)
|
||
|
return x1 * (x2 * torch.sigmoid(x2))
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def skip_init():
|
||
|
"""
|
||
|
skip param random init
|
||
|
"""
|
||
|
|
||
|
def _skip_init(*args, **kwargs):
|
||
|
pass
|
||
|
|
||
|
init_func = {
|
||
|
"constant_": torch.nn.init.constant_,
|
||
|
"uniform_": torch.nn.init.uniform_,
|
||
|
"normal_": torch.nn.init.normal_,
|
||
|
"kaiming_uniform_": torch.nn.init.kaiming_uniform_,
|
||
|
"kaiming_normal_": torch.nn.init.kaiming_normal_,
|
||
|
"xavier_normal_": torch.nn.init.xavier_normal_,
|
||
|
"xavier_uniform_": torch.nn.init.xavier_uniform_,
|
||
|
"trunc_normal_": torch.nn.init.trunc_normal_,
|
||
|
}
|
||
|
|
||
|
for method_name, original_init in init_func.items():
|
||
|
setattr(torch.nn.init, method_name, _skip_init)
|
||
|
|
||
|
yield
|
||
|
|
||
|
for method_name, original_init in init_func.items():
|
||
|
setattr(torch.nn.init, method_name, original_init)
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def get_moe_epsize_param_dict(model: nn.Module) -> Dict[int, List[nn.Parameter]]:
|
||
|
"""Returns a parameter dictionary, the key of which is the expert parallel
|
||
|
size of every parameter. Since the parameters in data parallelism is replicated
|
||
|
in each GPU, we set their ep_size to 1.
|
||
|
|
||
|
Args:
|
||
|
model (:class:`torch.nn.Module`): A pyTorch `nn.Module` from which we get dict.
|
||
|
"""
|
||
|
epsize_param_dict = dict()
|
||
|
for param in model.parameters():
|
||
|
if not is_moe_tensor(param):
|
||
|
ep_size = 1 # set ep_size to 1 for dp parameters
|
||
|
else:
|
||
|
ep_size = get_ep_size(param)
|
||
|
if ep_size not in epsize_param_dict:
|
||
|
epsize_param_dict[ep_size] = []
|
||
|
epsize_param_dict[ep_size].append(param)
|
||
|
|
||
|
return epsize_param_dict
|
||
|
|
||
|
|
||
|
def sync_moe_model_param(model: nn.Module):
|
||
|
"""Make sure model parameters are consistent in MoE parallel context.
|
||
|
|
||
|
Args:
|
||
|
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
|
||
|
"""
|
||
|
param_dict = get_moe_epsize_param_dict(model)
|
||
|
|
||
|
# synchronize the parameters whose dp_group is the whole world
|
||
|
if 1 in param_dict:
|
||
|
for param in param_dict[1]:
|
||
|
dist.broadcast(param, src=0)
|
||
|
|
||
|
for ep_size in param_dict:
|
||
|
# When ep_size = world_size, communication is not needed
|
||
|
if ep_size != 1 and ep_size != MOE_MANAGER.world_size:
|
||
|
for param in param_dict[ep_size]:
|
||
|
src_rank = get_dp_group_ranks(param)[0]
|
||
|
dist.broadcast(param, src=src_rank, group=get_dp_group(param))
|
||
|
|
||
|
|
||
|
def set_moe_args(config: Any, args: dict):
|
||
|
for k, v in args.items():
|
||
|
setattr(config, k, v)
|