ColossalAI/colossalai/auto_parallel/tensor_shard/solver/cost_graph.py

209 lines
10 KiB
Python
Raw Normal View History

import torch
from colossalai.auto_parallel.tensor_shard.constants import INFINITY_COST
class CostGraph:
'''
A graph data structure to simplify the edge cost graph. It has two main functions:
1. To feed the quadratic resharding costs into solver, we need to linearize it. We build edge_cost in
CostGraph, and it stored every combinations of strategies for a src-dst node pair in an 1D list.
2. To reduce the searching space, we merge computationally-trivial operators, such as
element-wise operators, transpose, and reduction, into their following nodes. The merging infomation will
be given by the StrategiesVector depending on the type of target node and following nodes.
Argument:
leaf_strategies(List[StrategiesVector]): It stores StrategiesVector of every nodes on the graph.
simplify(bool, optional): The generated cost graph will be simplified if it is true. (default to True)
'''
def __init__(self, leaf_strategies, simplify=True, forward_only=False):
self.leaf_strategies = leaf_strategies
self.nodes = [strategies_vector.node for strategies_vector in self.leaf_strategies]
# stores number of strategies in each node
self.node_lens = {strategies_vector.node: len(strategies_vector) for strategies_vector in self.leaf_strategies}
# extra_node_costs will store the extra costs introduced by merging nodes
self.extra_node_costs = {}
self.following_dict = {}
self.simplify = simplify
self.forward_only = forward_only
self._build_cost_graph()
def _remove_invalid_node(self, node, attr_name):
remove_list = []
target_node_list = getattr(node, attr_name, [])
for target_node in target_node_list:
if target_node not in self.nodes:
remove_list.append(target_node)
for element in remove_list:
target_node_list.remove(element)
def _build_cost_graph(self):
'''
This method will generate edge_cost for adjacent node pair. Additionally, 'parents' and 'children' attribute will be
set to node.
'''
self.edge_costs = {}
if self.simplify:
self.merge_pair = []
for strategies_vector in self.leaf_strategies:
# build edge_cost
dst_node = strategies_vector.node
for src_node in strategies_vector.predecessor_nodes:
if src_node not in self.nodes:
continue
node_pair = (src_node, dst_node)
edge_cost = {}
for i in range(len(strategies_vector)):
for j in range(len(src_node.strategies_vector)):
resharding_cost_item = strategies_vector[i].resharding_costs[src_node][j]
if self.forward_only:
edge_cost[(j, i)] = resharding_cost_item.fwd
else:
edge_cost[(j, i)] = resharding_cost_item.total
self.edge_costs[node_pair] = edge_cost
# add parents and children attribute to node
# parent_nodes = [node for node in strategies_vector.predecessor_nodes]
# children_nodes = [node for node in strategies_vector.successor_nodes]
parent_nodes = []
children_nodes = []
def _check_tensor_in_node(data):
"""
This method is used to check whether the data has a tensor inside or not.
"""
has_tensor_flag = False
if isinstance(data, torch.Tensor):
return True
elif isinstance(data, (tuple, list)):
for d in data:
has_tensor_flag = has_tensor_flag or _check_tensor_in_node(d)
return has_tensor_flag
for node in strategies_vector.predecessor_nodes:
if _check_tensor_in_node(node._meta_data):
parent_nodes.append(node)
for node in strategies_vector.successor_nodes:
if _check_tensor_in_node(node._meta_data):
children_nodes.append(node)
setattr(dst_node, 'parents', parent_nodes)
setattr(dst_node, 'children', children_nodes)
if self.simplify and strategies_vector.check_merge():
for followed_node in strategies_vector.predecessor_nodes:
# we only merge node pairs which src node has a tensor element inside.
# This is necessay because the node without a tensor element inside will not
# be assigned any strategy.
if _check_tensor_in_node(followed_node._meta_data):
self.merge_pair.append((followed_node, dst_node))
def get_edge_cost(self, src_node, dst_node):
return self.edge_costs[(src_node, dst_node)]
def merge_node(self, src_node, dst_node):
'''
To merge dst_node into src_node, we need to do it in following steps:
1. For each strategy in dst_node, we need to pick an appropriate strategy
of src_node to merge, it is important because the logical resharding costs
between the parents node of src_node and merged node depend on the src_node
strategies dispatching. For example, for the graph 0->1->2, after merging node 1
into node 2, edge_costs[(node 0, node 2)][(0, 0)] = edge_costs[(node 0, node 1)][(0, x)]
x represents the picking strategy of node 1 merged into node 2 strategy 0.
2. We need to accumulate the extra costs introduced by merging nodes, the extra costs
contains two parts, one is resharding costs between src_node strategy and dst_node strategy,
another is the origin extra costs in src_node strategy.
3. Build connections between new node pairs, and remove the src_node after all consumer nodes
detached from it.
Argument:
src_node(Node): The node will be merged into dst_node.
dst_node(Node): The node to integrate src_node.
'''
# build merge_map
merge_map = {}
for src_index, _ in enumerate(src_node.strategies_vector):
min_cost = INFINITY_COST
lowest_cost_index = -1
for dst_index, dst_strategy in enumerate(dst_node.strategies_vector):
resharding_cost_item = dst_strategy.resharding_costs[src_node][src_index]
if self.forward_only:
resharding_cost = resharding_cost_item.fwd
else:
resharding_cost = resharding_cost_item.total
if resharding_cost <= min_cost:
min_cost = resharding_cost
lowest_cost_index = dst_index
merge_map[src_index] = lowest_cost_index
# extra_node_cost for src node
self.extra_node_costs[src_node] = [0.0] * self.node_lens[src_node]
for src_index, strategy in enumerate(src_node.strategies_vector):
target_strate_index = merge_map[src_index]
target_strategy = dst_node.strategies_vector[target_strate_index]
resharding_cost_item = target_strategy.resharding_costs[src_node][src_index]
if self.forward_only:
resharding_cost_to_add = resharding_cost_item.fwd
else:
resharding_cost_to_add = resharding_cost_item.total
self.extra_node_costs[src_node][src_index] += resharding_cost_to_add
if dst_node in self.extra_node_costs:
self.extra_node_costs[src_node][src_index] += self.extra_node_costs[dst_node][target_strate_index]
# add new node pair to cost graph
for child_node in dst_node.children:
new_node_pair = (src_node, child_node)
old_node_pair = (dst_node, child_node)
if new_node_pair in self.edge_costs:
continue
edge_cost = {}
for i in range(self.node_lens[src_node]):
for j in range(self.node_lens[child_node]):
dst_strate_index = merge_map[i]
edge_cost[(i, j)] = self.edge_costs[old_node_pair][(dst_strate_index, j)]
if new_node_pair not in self.edge_costs:
self.edge_costs[new_node_pair] = edge_cost
else:
# we should accumulate the resharding costs if args of child node contain
# both src node and dst node.
for index_pair, resharding_cost in self.edge_costs[new_node_pair]:
self.edge_costs[new_node_pair][index_pair] += edge_cost[index_pair]
# connect src node and children of dst node
dst_node.parents.remove(src_node)
src_node.children.remove(dst_node)
self.edge_costs.pop((src_node, dst_node))
for child_node in dst_node.children:
if child_node not in src_node.children:
src_node.children.append(child_node)
if src_node not in child_node.parents:
child_node.parents.append(src_node)
# remove dst node from cost graph when dst node has no producer.
if len(dst_node.parents) == 0:
child_node.parents.remove(dst_node)
node_pair = (dst_node, child_node)
self.edge_costs.pop(node_pair)
if len(dst_node.parents) == 0:
self.following_dict[dst_node] = src_node
dst_node.children = []
def _reindexing_src(self, src):
if src not in self.following_dict:
return src
return self._reindexing_src(self.following_dict[src])
def simplify_graph(self):
if not self.simplify:
return
self.merge_pair.reverse()
for (src_node, dst_node) in self.merge_pair:
self.merge_node(src_node, dst_node)
self.merge_pair.reverse()
reindexing_following_dict = {}
for dst, src in self.following_dict.items():
reindexing_following_dict[dst] = self._reindexing_src(src)
self.following_dict = reindexing_following_dict