You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/kernel/cuda_native/csrc/scaled_masked_softmax_cuda.cu

90 lines
3.4 KiB

/*This code from NVIDIA Megatron:
* with minor changes. */
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "scaled_masked_softmax.h"
#include "type_shim.h"
namespace multihead_attn {
namespace fused_softmax {
namespace scaled_masked_softmax {
int get_batch_per_block_cuda(int query_seq_len, int key_seq_len, int batches,
int attn_heads) {
return get_batch_per_block(query_seq_len, key_seq_len, batches, attn_heads);
}
torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& mask,
float scale_factor) {
// input is a 4d tensor with dimensions [batches, attn_heads, seq_len,
// seq_len]
const int batches = input.size(0);
const int pad_batches = mask.size(0);
const int attn_heads = input.size(1);
const int query_seq_len = input.size(2);
const int key_seq_len = input.size(3);
TORCH_INTERNAL_ASSERT(key_seq_len <= 2048);
TORCH_INTERNAL_ASSERT(query_seq_len > 1);
TORCH_INTERNAL_ASSERT(pad_batches == 1 || pad_batches == batches);
TORCH_INTERNAL_ASSERT(mask.size(1) == 1);
TORCH_INTERNAL_ASSERT(mask.size(2) == query_seq_len);
TORCH_INTERNAL_ASSERT(mask.size(3) == key_seq_len);
// Output
auto act_options = input.options().requires_grad(false);
torch::Tensor softmax_results = torch::empty(
{batches, attn_heads, query_seq_len, key_seq_len}, act_options);
// Softmax Intermediate Result Ptr
void* input_ptr = static_cast<void*>(input.data_ptr());
void* mask_ptr = static_cast<void*>(mask.data_ptr());
void* softmax_results_ptr = static_cast<void*>(softmax_results.data_ptr());
DISPATCH_HALF_AND_BFLOAT(
input.scalar_type(), "dispatch_scaled_masked_softmax_forward",
dispatch_scaled_masked_softmax_forward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t*>(softmax_results_ptr),
reinterpret_cast<const scalar_t*>(input_ptr),
reinterpret_cast<const uint8_t*>(mask_ptr), scale_factor,
query_seq_len, key_seq_len, batches, attn_heads, pad_batches););
return softmax_results;
}
torch::Tensor bwd_cuda(torch::Tensor const& output_grads_,
torch::Tensor const& softmax_results_,
float scale_factor) {
auto output_grads = output_grads_.contiguous();
auto softmax_results = softmax_results_.contiguous();
// output grads is a 4d tensor with dimensions [batches, attn_heads, seq_len,
// seq_len]
const int batches = output_grads.size(0);
const int attn_heads = output_grads.size(1);
const int query_seq_len = output_grads.size(2);
const int key_seq_len = output_grads.size(3);
void* output_grads_ptr = static_cast<void*>(output_grads.data_ptr());
// Softmax Grad
DISPATCH_HALF_AND_BFLOAT(
output_grads_.scalar_type(), "dispatch_scaled_masked_softmax_backward",
dispatch_scaled_masked_softmax_backward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t*>(output_grads_ptr),
reinterpret_cast<scalar_t*>(output_grads_ptr),
reinterpret_cast<scalar_t const*>(softmax_results.data_ptr()),
scale_factor, query_seq_len, key_seq_len, batches, attn_heads););
// backward pass is completely in-place
return output_grads;
}
} // namespace scaled_masked_softmax
} // namespace fused_softmax
} // namespace multihead_attn