2023-06-08 03:27:05 +00:00
|
|
|
import torch
|
|
|
|
from datasets import load_dataset
|
2023-09-19 06:20:26 +00:00
|
|
|
from torch.utils.data import Dataset
|
2023-06-08 03:27:05 +00:00
|
|
|
|
|
|
|
|
|
|
|
class NetflixDataset(Dataset):
|
|
|
|
def __init__(self, tokenizer):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.tokenizer = tokenizer
|
|
|
|
self.input_ids = []
|
|
|
|
self.attn_masks = []
|
|
|
|
self.labels = []
|
2023-09-19 06:20:26 +00:00
|
|
|
self.txt_list = netflix_descriptions = load_dataset("hugginglearners/netflix-shows", split="train")[
|
|
|
|
"description"
|
|
|
|
]
|
2023-06-08 03:27:05 +00:00
|
|
|
self.max_length = max([len(self.tokenizer.encode(description)) for description in netflix_descriptions])
|
|
|
|
|
|
|
|
for txt in self.txt_list:
|
2023-09-19 06:20:26 +00:00
|
|
|
encodings_dict = self.tokenizer(
|
|
|
|
"</s>" + txt + "</s>", truncation=True, max_length=self.max_length, padding="max_length"
|
|
|
|
)
|
|
|
|
self.input_ids.append(torch.tensor(encodings_dict["input_ids"]))
|
|
|
|
self.attn_masks.append(torch.tensor(encodings_dict["attention_mask"]))
|
2023-06-08 03:27:05 +00:00
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.input_ids)
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
return self.input_ids[idx], self.attn_masks[idx]
|
2023-09-19 06:20:26 +00:00
|
|
|
|
2023-06-08 03:27:05 +00:00
|
|
|
|
|
|
|
def netflix_collator(data):
|
2023-09-19 06:20:26 +00:00
|
|
|
return {
|
|
|
|
"input_ids": torch.stack([x[0] for x in data]),
|
|
|
|
"attention_mask": torch.stack([x[1] for x in data]),
|
|
|
|
"labels": torch.stack([x[0] for x in data]),
|
|
|
|
}
|