Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
|
|
|
import torch.nn as nn
|
|
|
|
from typing import List
|
|
|
|
from colossalai.engine import BaseGradientHandler
|
|
|
|
from typing import Iterable
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
from ._gradient_accumulation import GradAccumDataloader, GradAccumOptimizer, GradAccumLrSchedulerByStep, GradAccumGradientHandler
|
|
|
|
|
|
|
|
|
|
|
|
def accumulate_gradient(model: nn.Module,
|
|
|
|
optimizer: Optimizer,
|
|
|
|
dataloader: Iterable,
|
|
|
|
accumulate_size: int,
|
|
|
|
gradient_handlers: List[BaseGradientHandler] = None,
|
|
|
|
lr_scheduler: _LRScheduler = None):
|
|
|
|
r"""Turning model, optimizer, dataloader into corresponding object for gradient accumulation.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (:class:`torch.nn.Module`): your model object for gradient accumulation.
|
|
|
|
optimizer (:class:`torch.optim.Optimizer`): your optimizer object for gradient accumulation.
|
|
|
|
dataloader (:class:`torch.utils.data.DataLoader` or iterable objects):
|
|
|
|
your dataloader object, would be called like iter(dataloader)
|
|
|
|
accumulate_size (int): the number of steps to accumulate gradients
|
|
|
|
gradient_handlers (List[:class:`colossalai.engine.BaseGradientHandler`]):
|
|
|
|
list of gradient handler objects. Default is None.
|
|
|
|
lr_scheduler (`torch.optim.lr_scheduler` or `colossalai.nn.lr_scheduler`):
|
|
|
|
your ``lr_scheduler`` object for gradient accumulation. Defaults to None.
|
|
|
|
|
|
|
|
More details about `gradient_handlers` could be found in
|
|
|
|
`Gradient_handler <https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/engine/gradient_handler>`_.
|
|
|
|
|
|
|
|
More details about `lr_scheduler` could be found
|
|
|
|
`lr_scheduler <https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/nn/lr_scheduler>`_. and
|
|
|
|
`how to adjust learning rate <https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate>`_.
|
|
|
|
"""
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
|
|
|
optimizer = GradAccumOptimizer(optimizer, accumulate_size=accumulate_size, model=model)
|
|
|
|
dataloader = GradAccumDataloader(dataloader, accumulate_size=accumulate_size)
|
|
|
|
|
|
|
|
if gradient_handlers is not None:
|
|
|
|
gradient_handlers = [GradAccumGradientHandler(handler, accumulate_size) for handler in gradient_handlers]
|
|
|
|
|
|
|
|
if lr_scheduler is not None:
|
|
|
|
lr_scheduler = GradAccumLrSchedulerByStep(lr_scheduler, accumulate_size=accumulate_size)
|
|
|
|
|
|
|
|
return optimizer, dataloader, gradient_handlers, lr_scheduler
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['accumulate_gradient', 'GradAccumDataloader', 'GradAccumOptimizer',
|
|
|
|
'GradAccumLrSchedulerByStep', 'GradAccumGradientHandler']
|