ColossalAI/colossalai/tensor/utils.py

85 lines
2.8 KiB
Python
Raw Normal View History

import torch
2022-04-21 06:15:48 +00:00
from colossalai.tensor.colo_tensor import ColoTensor
from typing import Iterator, Tuple, Union
import torch.nn as nn
from colossalai.tensor import ColoTensor
# The function is credited to PyTorch Team
def named_params_with_colotensor(
module: nn.Module,
prefix: str = '',
recurse: bool = True,
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
r"""Returns an iterator over module parameters (together with the
ColoTensor parameters), yielding both the name of the parameter
as well as the parameter itself. This is typically passed to a
:class:torchshard._shard.sharded_optim.ShardedOptimizer
Args:
prefix (str): prefix to prepend to all parameter names.
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
Yields:
(string, Union[Tensor, ColoTensor]): Tuple containing
the name and parameter (or ColoTensor parameter)
Example::
>>> model = torch.nn.Linear(*linear_size)
>>> delattr(model.weight)
>>> setattr(model.weight, ColoTensor(...))
>>> for name, param in named_params_with_colotensor(model):
>>> if name in ['weight']:
>>> print(param.size())
"""
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
memo = set()
for mod_prefix, mod in modules:
# find all sharded tensor params
for name, val in vars(mod).items():
if isinstance(val, ColoTensor) and val not in memo:
memo.add(val)
name = mod_prefix + ('.' if mod_prefix else '') + name
yield name, val
# find all nn.Parameters
for name, val in module.named_parameters():
yield name, val
2022-04-21 06:15:48 +00:00
def _convert_tensor(tensor: torch.Tensor) -> ColoTensor:
return ColoTensor(tensor)
def convert_parameter(module: torch.nn.Module, param_name: str):
# Perform some validation first.
if not hasattr(module, param_name):
raise ValueError(f'module: {module} does not have parameter with name: {param_name}')
tensor = getattr(module, param_name)
if not isinstance(tensor, torch.Tensor):
raise ValueError(
f'Expected {type(module).__name__}.{param_name} to be a Tensor, but found {type(tensor).__name__}')
if not tensor.is_contiguous():
raise ValueError(f'param: {param_name} is not a contiguous Tensor')
st = _convert_tensor(tensor)
2022-04-21 06:15:48 +00:00
# Replace param with ColoTensor.
# Need to delete the attribute first since param_name might be
2022-04-21 06:15:48 +00:00
# torch.nn.Parameter and can't be replaced with ColoTensor which is
# not torch.nn.Parameter.
delattr(module, param_name)
# Now we can set the attribute appropriately.
setattr(module, param_name, st)