2022-04-21 03:42:37 +00:00
|
|
|
import torch
|
|
|
|
|
2022-04-21 06:15:48 +00:00
|
|
|
from colossalai.tensor.colo_tensor import ColoTensor
|
2022-04-21 03:42:37 +00:00
|
|
|
|
2022-04-26 06:08:01 +00:00
|
|
|
from typing import Iterator, Tuple, Union
|
|
|
|
import torch.nn as nn
|
|
|
|
from colossalai.tensor import ColoTensor
|
|
|
|
|
|
|
|
|
|
|
|
# The function is credited to PyTorch Team
|
|
|
|
def named_params_with_colotensor(
|
|
|
|
module: nn.Module,
|
|
|
|
prefix: str = '',
|
|
|
|
recurse: bool = True,
|
|
|
|
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
|
|
|
|
r"""Returns an iterator over module parameters (together with the
|
|
|
|
ColoTensor parameters), yielding both the name of the parameter
|
|
|
|
as well as the parameter itself. This is typically passed to a
|
|
|
|
:class:torchshard._shard.sharded_optim.ShardedOptimizer
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prefix (str): prefix to prepend to all parameter names.
|
|
|
|
recurse (bool): if True, then yields parameters of this module
|
|
|
|
and all submodules. Otherwise, yields only parameters that
|
|
|
|
are direct members of this module.
|
|
|
|
|
|
|
|
Yields:
|
|
|
|
(string, Union[Tensor, ColoTensor]): Tuple containing
|
|
|
|
the name and parameter (or ColoTensor parameter)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
>>> model = torch.nn.Linear(*linear_size)
|
|
|
|
>>> delattr(model.weight)
|
|
|
|
>>> setattr(model.weight, ColoTensor(...))
|
|
|
|
>>> for name, param in named_params_with_colotensor(model):
|
|
|
|
>>> if name in ['weight']:
|
|
|
|
>>> print(param.size())
|
|
|
|
|
|
|
|
"""
|
|
|
|
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
|
|
|
|
|
|
|
|
memo = set()
|
|
|
|
for mod_prefix, mod in modules:
|
|
|
|
# find all sharded tensor params
|
|
|
|
for name, val in vars(mod).items():
|
|
|
|
if isinstance(val, ColoTensor) and val not in memo:
|
|
|
|
memo.add(val)
|
|
|
|
name = mod_prefix + ('.' if mod_prefix else '') + name
|
|
|
|
yield name, val
|
|
|
|
|
|
|
|
# find all nn.Parameters
|
|
|
|
for name, val in module.named_parameters():
|
|
|
|
yield name, val
|
|
|
|
|
2022-04-21 03:42:37 +00:00
|
|
|
|
2022-04-21 06:15:48 +00:00
|
|
|
def _convert_tensor(tensor: torch.Tensor) -> ColoTensor:
|
|
|
|
return ColoTensor(tensor)
|
2022-04-21 03:42:37 +00:00
|
|
|
|
|
|
|
|
|
|
|
def convert_parameter(module: torch.nn.Module, param_name: str):
|
|
|
|
# Perform some validation first.
|
|
|
|
if not hasattr(module, param_name):
|
|
|
|
raise ValueError(f'module: {module} does not have parameter with name: {param_name}')
|
|
|
|
|
|
|
|
tensor = getattr(module, param_name)
|
|
|
|
if not isinstance(tensor, torch.Tensor):
|
|
|
|
raise ValueError(
|
|
|
|
f'Expected {type(module).__name__}.{param_name} to be a Tensor, but found {type(tensor).__name__}')
|
|
|
|
|
|
|
|
if not tensor.is_contiguous():
|
|
|
|
raise ValueError(f'param: {param_name} is not a contiguous Tensor')
|
|
|
|
|
|
|
|
st = _convert_tensor(tensor)
|
|
|
|
|
2022-04-21 06:15:48 +00:00
|
|
|
# Replace param with ColoTensor.
|
2022-04-21 03:42:37 +00:00
|
|
|
|
|
|
|
# Need to delete the attribute first since param_name might be
|
2022-04-21 06:15:48 +00:00
|
|
|
# torch.nn.Parameter and can't be replaced with ColoTensor which is
|
2022-04-21 03:42:37 +00:00
|
|
|
# not torch.nn.Parameter.
|
|
|
|
delattr(module, param_name)
|
|
|
|
|
|
|
|
# Now we can set the attribute appropriately.
|
|
|
|
setattr(module, param_name, st)
|