|
|
|
import enum
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import Any, List
|
|
|
|
|
|
|
|
from colossalai.inference.config import DiffusionGenerationConfig
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
|
|
|
|
logger = get_dist_logger(__name__)
|
|
|
|
|
|
|
|
"""
|
|
|
|
The abstraction of request and sequence are defined here.
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
class RequestStatus(enum.Enum):
|
|
|
|
"""
|
|
|
|
The status of Sentences
|
|
|
|
"""
|
|
|
|
|
|
|
|
# running status
|
|
|
|
WAITING = enum.auto()
|
|
|
|
RUNNING = enum.auto()
|
|
|
|
ABORTED = enum.auto()
|
|
|
|
|
|
|
|
# completion status
|
|
|
|
OVERLENGTH = enum.auto()
|
|
|
|
COMPLETED = enum.auto()
|
|
|
|
LENGTH_CAPPED = enum.auto()
|
|
|
|
|
|
|
|
# recycle status
|
|
|
|
RECYCLED = enum.auto()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def is_finished(status: "RequestStatus") -> bool:
|
|
|
|
return status in [
|
|
|
|
RequestStatus.OVERLENGTH,
|
|
|
|
RequestStatus.COMPLETED,
|
|
|
|
RequestStatus.LENGTH_CAPPED,
|
|
|
|
]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def is_running(status: "RequestStatus") -> bool:
|
|
|
|
return status == RequestStatus.RUNNING
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def is_waiting(status: "RequestStatus") -> bool:
|
|
|
|
return status == RequestStatus.WAITING
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class DiffusionSequence:
|
|
|
|
"""
|
|
|
|
parameters for diffusion
|
|
|
|
"""
|
|
|
|
|
|
|
|
request_id: int
|
|
|
|
prompt: str
|
|
|
|
generation_config: DiffusionGenerationConfig
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class Sequence:
|
|
|
|
"""Store information of input sequence.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request_id (int): The ID of input sequence.
|
|
|
|
prompt (str): The prompt of input sequence.
|
|
|
|
input_token_id (List[int]): The tokens ID of input sequence.
|
|
|
|
block_size (int): The block size of input sequence.
|
|
|
|
sample_params (SampleParams): The sample_params of input sequence.
|
|
|
|
block_table (torch.Tensor): The index of input sequence in block_table.
|
|
|
|
eos_token_id (int): The eos token id for this inference process.
|
|
|
|
pad_token_id (int): The pad token id for this inference process.
|
|
|
|
max_output_len (int): Maximum output length.
|
|
|
|
ignore_eos(bool): Whether to ignore the EOS token and continue generating tokens when encountering the EOS token.
|
|
|
|
output(str): The output of sequence
|
|
|
|
"""
|
|
|
|
|
|
|
|
request_id: int
|
|
|
|
prompt: str
|
|
|
|
input_token_id: List[int]
|
|
|
|
block_size: int
|
|
|
|
sample_params: Any # SampleParams needs to be imported later.
|
|
|
|
eos_token_id: int
|
|
|
|
pad_token_id: int
|
|
|
|
max_output_len: int = 256
|
|
|
|
# NOTE(caidi) This is a temporary solution. It's better to move the logic to turn on or off the flag in sampling module in future.
|
|
|
|
ignore_eos: bool = False
|
|
|
|
output: str = None
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
self.output_token_id = []
|
|
|
|
self.status = RequestStatus.WAITING
|
|
|
|
|
|
|
|
@property
|
|
|
|
def sentence_len(self) -> int:
|
|
|
|
"""
|
|
|
|
Get length of current sentence.
|
|
|
|
"""
|
|
|
|
return len(self.input_token_id) + len(self.output_token_id)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def input_len(self) -> int:
|
|
|
|
"""
|
|
|
|
Get length of input sentence.
|
|
|
|
"""
|
|
|
|
return len(self.input_token_id)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def output_len(self) -> int:
|
|
|
|
"""
|
|
|
|
Get length of output sentence.
|
|
|
|
"""
|
|
|
|
return len(self.output_token_id)
|
|
|
|
|
|
|
|
def check_finish(self) -> bool:
|
|
|
|
"""
|
|
|
|
Check whether the inference is finished.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: Whether the inference is finished.
|
|
|
|
"""
|
|
|
|
if RequestStatus.is_finished(self.status):
|
|
|
|
return True
|
|
|
|
|
|
|
|
if self.output_token_id:
|
|
|
|
if (
|
|
|
|
self.output_token_id[-1] == self.eos_token_id and not self.ignore_eos
|
|
|
|
) or self.output_len >= self.max_output_len:
|
|
|
|
self.status = RequestStatus.COMPLETED
|
|
|
|
return True
|
|
|
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
def revoke_finished_status(self) -> None:
|
|
|
|
"""
|
|
|
|
Revoke the finished status of the sequence.
|
|
|
|
This is only used by speculative decoding for now.
|
|
|
|
"""
|
|
|
|
if RequestStatus.is_finished(self.status):
|
|
|
|
self.status = RequestStatus.RUNNING
|
|
|
|
|
|
|
|
def __hash__(self):
|
|
|
|
return hash(self.request_id)
|
|
|
|
|
|
|
|
def mark_running(self) -> None:
|
|
|
|
"""
|
|
|
|
Set status for prefill reqs.
|
|
|
|
"""
|
|
|
|
assert (
|
|
|
|
self.status == RequestStatus.WAITING or RequestStatus.RECYCLED
|
|
|
|
), "Sequence is not in WAITTING/RECYCLED STATUS"
|
|
|
|
self.status = RequestStatus.RUNNING
|
|
|
|
|
|
|
|
def mark_finished(self) -> None:
|
|
|
|
"""
|
|
|
|
Set status for finished reqs.
|
|
|
|
"""
|
|
|
|
self.status = RequestStatus.COMPLETED
|
|
|
|
|
|
|
|
def mark_aborted(self) -> None:
|
|
|
|
"""
|
|
|
|
Set status for aborted reqs.
|
|
|
|
"""
|
|
|
|
self.status = RequestStatus.ABORTED
|
|
|
|
|
|
|
|
def recycle(self) -> None:
|
|
|
|
"""
|
|
|
|
Recycle a running sequnce to waiitting list
|
|
|
|
"""
|
|
|
|
assert (
|
|
|
|
not self.check_finish() and not self.status == RequestStatus.ABORTED
|
|
|
|
), "The running sequence \
|
|
|
|
is already done but it still in running list"
|
|
|
|
self.status = RequestStatus.RECYCLED
|
|
|
|
|
|
|
|
def __repr__(self) -> str:
|
|
|
|
return (
|
|
|
|
f"(request_id={self.request_id}, "
|
|
|
|
f"prompt={self.prompt},\n"
|
|
|
|
f"output_token_id={self.output_token_id},\n"
|
|
|
|
f"output={self.output},\n"
|
|
|
|
f"status={self.status.name},\n"
|
|
|
|
f"sample_params={self.sample_params},\n"
|
|
|
|
f"input_len={self.input_len},\n"
|
|
|
|
f"output_len={self.output_len})\n"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _pad_to_max(x: List[int], max_len: int, pad: int) -> List[int]:
|
|
|
|
assert len(x) <= max_len
|
|
|
|
return [pad] * (max_len - len(x)) + x
|