mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.2 KiB
76 lines
2.2 KiB
2 years ago
|
model:
|
||
|
base_learning_rate: 1.0e-04
|
||
|
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
||
|
params:
|
||
|
parameterization: "v"
|
||
|
low_scale_key: "lr"
|
||
|
linear_start: 0.0001
|
||
|
linear_end: 0.02
|
||
|
num_timesteps_cond: 1
|
||
|
log_every_t: 200
|
||
|
timesteps: 1000
|
||
|
first_stage_key: "jpg"
|
||
|
cond_stage_key: "txt"
|
||
|
image_size: 128
|
||
|
channels: 4
|
||
|
cond_stage_trainable: false
|
||
|
conditioning_key: "hybrid-adm"
|
||
|
monitor: val/loss_simple_ema
|
||
|
scale_factor: 0.08333
|
||
|
use_ema: False
|
||
|
|
||
|
low_scale_config:
|
||
|
target: ldm.modules.diffusionmodules.upscaling.ImageConcatWithNoiseAugmentation
|
||
|
params:
|
||
|
noise_schedule_config: # image space
|
||
|
linear_start: 0.0001
|
||
|
linear_end: 0.02
|
||
|
max_noise_level: 350
|
||
|
|
||
|
unet_config:
|
||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||
|
params:
|
||
|
use_checkpoint: True
|
||
|
num_classes: 1000 # timesteps for noise conditioning (here constant, just need one)
|
||
|
image_size: 128
|
||
|
in_channels: 7
|
||
|
out_channels: 4
|
||
|
model_channels: 256
|
||
|
attention_resolutions: [ 2,4,8]
|
||
|
num_res_blocks: 2
|
||
|
channel_mult: [ 1, 2, 2, 4]
|
||
|
disable_self_attentions: [True, True, True, False]
|
||
|
disable_middle_self_attn: False
|
||
|
num_heads: 8
|
||
|
use_spatial_transformer: True
|
||
|
transformer_depth: 1
|
||
|
context_dim: 1024
|
||
|
legacy: False
|
||
|
use_linear_in_transformer: True
|
||
|
|
||
|
first_stage_config:
|
||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||
|
params:
|
||
|
embed_dim: 4
|
||
|
ddconfig:
|
||
|
# attn_type: "vanilla-xformers" this model needs efficient attention to be feasible on HR data, also the decoder seems to break in half precision (UNet is fine though)
|
||
|
double_z: True
|
||
|
z_channels: 4
|
||
|
resolution: 256
|
||
|
in_channels: 3
|
||
|
out_ch: 3
|
||
|
ch: 128
|
||
|
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
|
||
|
num_res_blocks: 2
|
||
|
attn_resolutions: [ ]
|
||
|
dropout: 0.0
|
||
|
|
||
|
lossconfig:
|
||
|
target: torch.nn.Identity
|
||
|
|
||
|
cond_stage_config:
|
||
|
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||
|
params:
|
||
|
freeze: True
|
||
|
layer: "penultimate"
|