ColossalAI/tests/test_pipeline/test_schedule/test_interleaved.py

160 lines
4.9 KiB
Python
Raw Normal View History

import copy
from functools import partial
from types import MethodType
import pytest
import torch
import torch.nn as nn
import colossalai
from colossalai.cluster import ProcessGroupMesh
from colossalai.interface import OptimizerWrapper
from colossalai.pipeline.schedule.interleaved_pp import InterleavedSchedule
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
class MlpModel(nn.Module):
def __init__(self):
super(MlpModel, self).__init__()
self.linear1 = nn.Linear(4, 8)
self.linear2 = nn.Linear(8, 8)
self.linear3 = nn.Linear(8, 8)
self.linear4 = nn.Linear(8, 8)
self.linear5 = nn.Linear(8, 8)
self.linear6 = nn.Linear(8, 8)
self.linear7 = nn.Linear(8, 8)
self.linear8 = nn.Linear(8, 4)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
x = self.linear4(x)
x = self.linear5(x)
x = self.linear6(x)
x = self.linear7(x)
x = self.linear8(x)
return x
def pp_linear_fwd(
forward,
data: torch.Tensor = None,
input_obj: torch.Tensor = None,
stage_mgr: PipelineStageManager = None,
num_chunks: int = None,
model_chunk_id: int = None,
):
if stage_mgr.is_first_stage() and model_chunk_id == 0:
return {"input_obj": forward(data)}
elif stage_mgr.is_last_stage() and model_chunk_id == num_chunks - 1:
return forward(input_obj)
else:
return {"input_obj": forward(input_obj)}
@parameterize("num_micro_batches", [4, 8, 12])
def examine_pp(num_micro_batches):
"""
This test is to examine the correctness of interleaved 1F1B, compared with torch.
Be aware it contains some hardcodes.
"""
world_size = torch.distributed.get_world_size()
local_rank = torch.distributed.get_rank()
seed_all(1453)
NUM_MICRO_BATCHS = num_micro_batches
BATCH_SIZE = num_micro_batches
NUM_CHUNKS = 2
# create model
torch_model = MlpModel().cuda()
pp_model = copy.deepcopy(torch_model).cuda()
DP_DIM, PP_DIM, TP_DIM = 0, 1, 2
pg_mesh = ProcessGroupMesh(1, world_size, 1)
stage_manager = PipelineStageManager(pg_mesh, PP_DIM, is_virtual=True)
schedule = InterleavedSchedule(NUM_MICRO_BATCHS, NUM_CHUNKS, stage_manager)
sharded_model = torch.nn.ModuleList()
for idx, (_, sub_model) in enumerate(pp_model.named_children()):
if idx % (world_size) == local_rank:
sub_model._forward = sub_model.forward
sub_model.forward = MethodType(
partial(
pp_linear_fwd, stage_mgr=stage_manager, num_chunks=NUM_CHUNKS, model_chunk_id=len(sharded_model)
),
sub_model._forward,
)
sharded_model.append(sub_model.cuda())
# create optimizer
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
pp_optimizer = OptimizerWrapper(torch.optim.SGD(sharded_model.parameters(), lr=1))
# create
seed_all(1453)
if local_rank == 0:
input_list = [torch.rand(BATCH_SIZE, 4).cuda()]
else:
input_list = [torch.zeros(BATCH_SIZE, 4).cuda()]
torch.distributed.all_reduce(input_list[0])
criterion = lambda x, y: torch.mean(x)
# forward and backward
torch_output = torch_model(input_list[0])
torch_loss = criterion(torch_output, _)
torch_loss.backward()
pp_ret = schedule.forward_backward_step(
sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True, return_outputs=True
)
# check loss
if stage_manager.is_last_stage():
assert torch.allclose(torch_loss, pp_ret["loss"])
# check gradients
torch_grad = []
for torch_p in torch_model.parameters():
torch_grad.append(torch_p.grad.data)
for idx, pp_p in enumerate(sharded_model.parameters()):
if idx < 2:
assert torch.allclose(torch_grad[idx + local_rank * 2], pp_p.grad.data)
else:
assert torch.allclose(torch_grad[idx + local_rank * 2 + 6], pp_p.grad.data)
# step
torch_optimizer.step()
pp_optimizer.step()
# check updated param
torch_param = []
for torch_p in torch_model.parameters():
torch_param.append(torch_p.data)
for idx, pp_p in enumerate(sharded_model.parameters()):
if idx < 2:
assert torch.allclose(torch_param[idx + local_rank * 2], pp_p.data)
else:
assert torch.allclose(torch_param[idx + local_rank * 2 + 6], pp_p.data)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost")
examine_pp()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_pp():
spawn(run_dist, 4)
if __name__ == "__main__":
test_pp()