ColossalAI/tests/test_tensor/test_chunk.py

87 lines
3.2 KiB
Python
Raw Normal View History

import torch
import colossalai
import pytest
import torch.multiprocessing as mp
from typing import List
from functools import partial
from colossalai.gemini import ChunkManager
from colossalai.testing import rerun_if_address_is_in_use, parameterize
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
def check_has_params(params: List[torch.Tensor], has_tensors: List[bool]):
for p, has_tensor in zip(params, has_tensors):
if has_tensor:
assert p.storage().size() > 0
assert p.device.type == 'cuda'
else:
assert p.storage().size() == 0
# HAS_TENSORS[use_chunk][use_zero]
HAS_TENSORS = {
True: {
True: [[True, True, False], [False, False, True]],
False: [[True, True, True], [True, True, True]]
},
False: {
True: [[True, False, True], [False, True, False]],
False: [[True, True, True], [True, True, True]]
}
}
TOTAL_MEM = {True: {True: [512, 512], False: [1024, 1024]}, False: {True: [512, 256], False: [768, 768]}}
@parameterize('use_chunk', [False, True])
@parameterize('use_zero', [False, True])
def run_chunk_zero(use_chunk, use_zero):
rank = gpc.get_local_rank(ParallelMode.DATA)
if rank == 0:
print(f'use_chunk={use_chunk}, use_zero={use_zero}')
params = [torch.rand(8, 8) for _ in range(3)]
chunk_size = 128 if use_chunk else None
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
chunk_manager.create_group('param')
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == 0
for p in params:
chunk_manager.append_tensor(p, 'param')
check_has_params(params, HAS_TENSORS[use_chunk][use_zero][rank])
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][use_zero][rank]
chunks = chunk_manager.get_chunks(params)
for chunk in chunks:
chunk_manager.access_chunk(chunk)
check_has_params(params, [True, True, True])
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][False][rank]
for chunk in chunks:
chunk_manager.release_chunk(chunk)
check_has_params(params, HAS_TENSORS[use_chunk][use_zero][rank])
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][use_zero][rank], chunk_manager.total_mem['cuda']
for chunk in chunks:
chunk_manager.move_chunk(chunk, torch.device('cpu'))
assert chunk_manager.total_mem['cpu'] == TOTAL_MEM[use_chunk][use_zero][rank], chunk_manager.total_mem['cuda']
assert chunk_manager.total_mem['cuda'] == 0
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_chunk_zero()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@rerun_if_address_is_in_use()
def test_chunk_mapping(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_chunk_mapping(2)