ColossalAI/colossalai/utils/tensor_detector/readme.md

128 lines
7.5 KiB
Markdown
Raw Normal View History

# Tensor Detector
This tool supports you to detect tensors on both CPU and GPU. However, there will always be some strange tensors on CPU, including the rng state of PyTorch.
## Example
An example is worth than a thousand words.
The code below defines a simple MLP module, with which we will show you how to use the tool.
```python
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.mlp = nn.Sequential(nn.Linear(64, 8),
nn.ReLU(),
nn.Linear(8, 32))
def forward(self, x):
return self.mlp(x)
```
And here is how to use the tool.
```python
from colossalai.utils import TensorDetector
# create random data
data = torch.rand(64, requires_grad=True).cuda()
data.retain_grad()
# create the module
model = MLP().cuda()
# create the detector
# by passing the model to the detector, it can distinguish module parameters from common tensors
detector = TensorDetector(include_cpu=False, module=model)
detector.detect()
out = model(data)
detector.detect()
loss = out.sum()
loss.backward()
detector.detect()
```
I have made some comments on the right of the output for your understanding.
Note that the total `Mem` of all the tensors and parameters is not equal to `Total GPU Memory Allocated`. PyTorch's memory management is really complicated, and for models of a large scale, it's impossible to figure out clearly.
**The order of print is not equal to the order the tensor creates, but they are really close.**
```bash
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor cuda:0 (64,) True torch.float32 256 B # data
+ mlp.0.weight cuda:0 (8, 64) True torch.float32 2.0 KB
+ mlp.0.bias cuda:0 (8,) True torch.float32 32 B
+ mlp.2.weight cuda:0 (32, 8) True torch.float32 1.0 KB
+ mlp.2.bias cuda:0 (32,) True torch.float32 128 B
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 27
Total GPU Memory Allocated on cuda:0 is 4.5 KB
------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor cuda:0 (8,) True torch.float32 32 B # activation
+ Tensor cuda:0 (32,) True torch.float32 128 B # output
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 30
Total GPU Memory Allocated on cuda:0 is 5.5 KB
------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor cuda:0 () True torch.float32 4 B # loss
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 32
Total GPU Memory Allocated on cuda:0 is 6.0 KB
------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor (with grad) cuda:0 (64,) True torch.float32 512 B # data with grad
+ mlp.0.weight (with grad) cuda:0 (8, 64) True torch.float32 4.0 KB # for use data.retain_grad()
+ mlp.0.bias (with grad) cuda:0 (8,) True torch.float32 64 B
+ mlp.2.weight (with grad) cuda:0 (32, 8) True torch.float32 2.0 KB
+ mlp.2.bias (with grad) cuda:0 (32,) True torch.float32 256 B
- mlp.0.weight cuda:0 (8, 64) True torch.float32 2.0 KB
- mlp.0.bias cuda:0 (8,) True torch.float32 32 B
- mlp.2.weight cuda:0 (32, 8) True torch.float32 1.0 KB
- mlp.2.bias cuda:0 (32,) True torch.float32 128 B
- Tensor cuda:0 (64,) True torch.float32 256 B
- Tensor cuda:0 (8,) True torch.float32 32 B # deleted activation
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 34
Total GPU Memory Allocated on cuda:0 is 10.0 KB
------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor cuda:0 (64,) False torch.float32 256 B
+ Tensor cuda:0 (8, 64) False torch.float32 2.0 KB
+ Tensor cuda:0 (8,) False torch.float32 32 B
+ Tensor cuda:0 (32, 8) False torch.float32 1.0 KB
+ Tensor cuda:0 (32,) False torch.float32 128 B
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 36
Total GPU Memory Allocated on cuda:0 is 14.0 KB
------------------------------------------------------------------------------------------------------------
```
## Reference
This tool was inspired by https://github.com/Stonesjtu/pytorch_memlab/blob/master/pytorch_memlab/mem_reporter.py
and https://github.com/Oldpan/Pytorch-Memory-Utils