mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
5.8 KiB
143 lines
5.8 KiB
2 years ago
|
# 2.5D Tensor Parallelism
|
||
|
|
||
|
Author: Zhengda Bian, Yongbin Li
|
||
|
|
||
|
**Prerequisite**
|
||
|
- [Define Your Configuration](../basics/define_your_config.md)
|
||
|
- [Configure Parallelization](../basics/configure_parallelization.md)
|
||
|
- [1D Tensor Parallelism](./1D_tensor_parallel.md)
|
||
|
- [2D Tensor Parallelism](./2D_tensor_parallel.md)
|
||
|
|
||
|
**Example Code**
|
||
|
- [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_2p5d.py)
|
||
|
|
||
|
**Related Paper**
|
||
|
- [2.5-dimensional distributed model training](https://arxiv.org/pdf/2105.14500.pdf)
|
||
|
|
||
|
## Introduction
|
||
|
|
||
|
Compared with 1D tensor parallelism, 2D parallelism reduces the memory cost, but may introduce more communication.
|
||
|
Therefore, a [2.5D tensor parallelism algorithm](https://arxiv.org/pdf/2105.14500.pdf) was proposed based on 2.5D SUMMA to reduce communication by using more devices.
|
||
|
|
||
|
Let's still take a linear layer $Y = XA$ as an example.
|
||
|
Given $P=q \times q \times d$ processors (necessary condition), e.g. $q=d=2$, we split the input $X$ into $d\times q$ rows and $q$ columns as
|
||
|
|
||
|
$$
|
||
|
\left[\begin{matrix} X_{30} & X_{31} \\ X_{20} & X_{21} \\ X_{10} & X_{11} \\ X_{00} & X_{01}\end{matrix} \right],
|
||
|
$$
|
||
|
which can be reshaped into $d$ layers as
|
||
|
|
||
|
$$
|
||
|
\left[\begin{matrix} X_{10} & X_{11} \\ X_{00} & X_{01} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{30} & X_{31} \\ X_{20} & X_{21} \end{matrix} \right].
|
||
|
$$
|
||
|
|
||
|
Also, the weight $A$ is split into
|
||
|
|
||
|
$$
|
||
|
\left[\begin{matrix} A_{10} & A_{11} \\ A_{00} & A_{01} \end{matrix} \right].
|
||
|
$$
|
||
|
|
||
|
For each layer of $X$, we use the SUMMA algorithm to multiply $X$ and $A$.
|
||
|
Then, we have the output
|
||
|
|
||
|
$$
|
||
|
\left[\begin{matrix} Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \\ Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \end{matrix} \right]
|
||
|
\text{~and~}
|
||
|
$$
|
||
|
$$
|
||
|
\left[\begin{matrix} Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \\ Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \end{matrix} \right].
|
||
|
$$
|
||
|
|
||
|
## Efficiency
|
||
|
Given $P=q \times q \times d$ processors, we present the theoretical computation and memory cost, as well as the communication cost based on the ring algorithm in both the forward and backward pass of 2.5D tensor parallelism.
|
||
|
|
||
|
| Computation | Memory (parameters) | Memory (activations) | Communication (bandwidth) | Communication (latency) |
|
||
|
| :-: | :-: | :-: | :-: | :-: |
|
||
|
| $O(1/dq^2)$ | $O(1/q^2)$ | $O(1/dq^2)$ | $\small O(3(q-1)(d+1)/dq)$ | $O(6(q-1))$ |
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
To enable 2.5D tensor parallelism for our model, e.g. on 8 GPUs, we need to configure the parallism setting as below.
|
||
|
```python
|
||
|
CONFIG = dict(parallel=dict(
|
||
|
data=1,
|
||
|
pipeline=1,
|
||
|
tensor=dict(size=8, mode='2.5d', depth=2),
|
||
|
))
|
||
|
|
||
|
```
|
||
|
Then Colossal-AI will automatically apply 2.5D parallelism to all the layers from `colossalai.nn`.
|
||
|
|
||
|
Let's define a model that consists of a two-layer multi-layer perceptron (MLP) as below.
|
||
|
```python
|
||
|
import colossalai
|
||
|
import colossalai.nn as col_nn
|
||
|
import torch
|
||
|
from colossalai.utils import print_rank_0
|
||
|
|
||
|
class MLP(torch.nn.Module):
|
||
|
def __init__(self, dim: int = 256):
|
||
|
super().__init__()
|
||
|
intermediate_dim = dim * 4
|
||
|
self.dense_1 = col_nn.Linear(dim, intermediate_dim)
|
||
|
print_rank_0(f'Weight of the first linear layer: {self.dense_1.weight.shape}')
|
||
|
self.activation = torch.nn.GELU()
|
||
|
self.dense_2 = col_nn.Linear(intermediate_dim, dim)
|
||
|
print_rank_0(f'Weight of the second linear layer: {self.dense_2.weight.shape}')
|
||
|
self.dropout = col_nn.Dropout(0.1)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.dense_1(x)
|
||
|
print_rank_0(f'Output of the first linear layer: {x.shape}')
|
||
|
x = self.activation(x)
|
||
|
x = self.dense_2(x)
|
||
|
print_rank_0(f'Output of the second linear layer: {x.shape}')
|
||
|
x = self.dropout(x)
|
||
|
return x
|
||
|
```
|
||
|
Launch Colossal-AI on 8 GPUs and build the model
|
||
|
```python
|
||
|
parser = colossalai.get_default_parser()
|
||
|
colossalai.launch(config=CONFIG,
|
||
|
rank=args.rank,
|
||
|
world_size=args.world_size,
|
||
|
local_rank=args.local_rank,
|
||
|
host=args.host,
|
||
|
port=args.port)
|
||
|
|
||
|
m = MLP()
|
||
|
```
|
||
|
We will see the shapes of partitioned parameters(e.g. weights) in the MLP model.
|
||
|
```shell
|
||
|
Weight of the first linear layer: torch.Size([128, 512])
|
||
|
Weight of the second linear layer: torch.Size([512, 128])
|
||
|
```
|
||
|
The complete weight of the first linear layer is supposed to have the shape `[256, 1024]`. After the partitioning of 2.5D parallelism, it becomes `[128, 512]` on each GPU.
|
||
|
Similarly, the second layer partitions the weight `[1024, 256]` into `[512, 128]`.
|
||
|
|
||
|
We can run the model with some random inputs.
|
||
|
```python
|
||
|
from colossalai.context import ParallelMode
|
||
|
from colossalai.core import global_context as gpc
|
||
|
from colossalai.utils import get_current_device
|
||
|
|
||
|
x = torch.randn((16, 256), device=get_current_device())
|
||
|
# partition input
|
||
|
torch.distributed.broadcast(x, src=0)
|
||
|
x = torch.chunk(x, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)]
|
||
|
x = torch.chunk(x, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)]
|
||
|
x = torch.chunk(x, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)]
|
||
|
print_rank_0(f'Input: {x.shape}')
|
||
|
|
||
|
x = m(x)
|
||
|
```
|
||
|
Then we can see the shapes of activation results.
|
||
|
```shell
|
||
|
Input: torch.Size([4, 128])
|
||
|
Output of the first linear layer: torch.Size([4, 512])
|
||
|
Output of the second linear layer: torch.Size([4, 128])
|
||
|
```
|
||
|
The activation tensors in 2.5D parallelism are all split by $d \times q$ in the row and $q$ in the column.
|
||
|
E.g. the output of the first linear layer has the shape `[4, 512]`), while the second layer has the output of `[4, 128]`.
|
||
|
Note, 2.5D parallelism use the same partition method as 2D parallelism for weights, where the difference is the partition of input.
|