ColossalAI/colossalai/kernel/cuda_native/scaled_softmax.py

202 lines
6.6 KiB
Python
Raw Normal View History

2021-12-21 04:19:52 +00:00
"""This code from NVIDIA Megatron
with some changes. """
import torch
import torch.nn as nn
import enum
class AttnMaskType(enum.Enum):
padding = 1
causal = 2
class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
"""
Fused operation which performs following three operations in sequence
2022-01-21 02:44:30 +00:00
1. Scale the tensor.
2. Apply upper triangular mask (typically used in gpt models).
3. Perform softmax.
2021-12-21 04:19:52 +00:00
"""
@staticmethod
def forward(ctx, inputs, scale):
2022-01-13 08:47:17 +00:00
try:
import colossal_scaled_upper_triang_masked_softmax
except ImportError:
raise RuntimeError('ScaledUpperTriangMaskedSoftmax requires cuda extensions')
2021-12-21 04:19:52 +00:00
scale_t = torch.tensor([scale])
softmax_results = colossal_scaled_upper_triang_masked_softmax.forward(
inputs, scale_t[0]
)
2021-12-21 04:19:52 +00:00
ctx.save_for_backward(softmax_results, scale_t)
return softmax_results
@staticmethod
def backward(ctx, output_grads):
2022-01-13 08:47:17 +00:00
try:
import colossal_scaled_upper_triang_masked_softmax
except ImportError:
raise RuntimeError('ScaledUpperTriangMaskedSoftmax requires cuda extensions')
2021-12-21 04:19:52 +00:00
softmax_results, scale_t = ctx.saved_tensors
input_grads = colossal_scaled_upper_triang_masked_softmax.backward(
output_grads, softmax_results, scale_t[0]
)
2021-12-21 04:19:52 +00:00
return input_grads, None
class ScaledMaskedSoftmax(torch.autograd.Function):
"""
Fused operation which performs following three operations in sequence
2022-01-21 02:44:30 +00:00
1. Scale the tensor.
2. Apply the mask.
3. Perform softmax.
2021-12-21 04:19:52 +00:00
"""
@staticmethod
def forward(ctx, inputs, mask, scale):
2022-01-13 08:47:17 +00:00
try:
import colossal_scaled_masked_softmax
except ImportError:
raise RuntimeError('ScaledMaskedSoftmax requires cuda extensions')
2021-12-21 04:19:52 +00:00
scale_t = torch.tensor([scale])
softmax_results = colossal_scaled_masked_softmax.forward(inputs, mask, scale_t[0])
ctx.save_for_backward(softmax_results, scale_t)
return softmax_results
@staticmethod
def backward(ctx, output_grads):
2022-01-13 08:47:17 +00:00
try:
import colossal_scaled_masked_softmax
except ImportError:
raise RuntimeError('ScaledMaskedSoftmax requires cuda extensions')
2021-12-21 04:19:52 +00:00
softmax_results, scale_t = ctx.saved_tensors
input_grads = colossal_scaled_masked_softmax.backward(
output_grads, softmax_results, scale_t[0]
)
2021-12-21 04:19:52 +00:00
return input_grads, None, None
class FusedScaleMaskSoftmax(nn.Module):
"""
2022-01-21 02:44:30 +00:00
Fused operation: scaling + mask + softmax
2021-12-21 04:19:52 +00:00
Arguments:
2022-01-21 02:44:30 +00:00
input_in_fp16: Flag to indicate if input in fp16 data format.
input_in_bf16: Flag to indicate if input in bf16 data format.
attn_mask_type: Attention mask type (pad or causal)
scaled_masked_softmax_fusion: Flag to indicate user want to use softmax fusion
mask_func: Mask function to be applied.
softmax_in_fp32: If True, softmax in performed at fp32 precision.
scale: Scaling factor used in input tensor scaling.
2021-12-21 04:19:52 +00:00
"""
def __init__(
self,
input_in_fp16,
input_in_bf16,
attn_mask_type,
scaled_masked_softmax_fusion,
mask_func,
softmax_in_fp32,
scale,
):
super(FusedScaleMaskSoftmax, self).__init__()
self.input_in_fp16 = input_in_fp16
self.input_in_bf16 = input_in_bf16
assert not (
self.input_in_fp16 and self.input_in_bf16
), "both fp16 and bf16 flags cannot be active at the same time."
2021-12-21 04:19:52 +00:00
self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16
self.attn_mask_type = attn_mask_type
self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
self.mask_func = mask_func
self.softmax_in_fp32 = softmax_in_fp32
self.scale = scale
assert (
self.scale is None or softmax_in_fp32
), "softmax should be in fp32 when scaled"
2021-12-21 04:19:52 +00:00
def forward(self, input, mask):
# [b, np, sq, sk]
assert input.dim() == 4
if self.is_kernel_available(mask, *input.size()):
return self.forward_fused_softmax(input, mask)
else:
return self.forward_torch_softmax(input, mask)
def is_kernel_available(self, mask, b, np, sq, sk):
attn_batches = b * np
if (
self.scaled_masked_softmax_fusion # user want to fuse
and self.input_in_float16 # input must be fp16
and mask is not None # mask tensor must not be None
and 16 < sk <= 2048 # sk must be 16 ~ 2048
and sq % 4 == 0 # sq must be divisor of 4
and attn_batches % 4 == 0 # np * b must be divisor of 4
):
2021-12-21 04:19:52 +00:00
if 0 <= sk <= 2048:
batch_per_block = self.get_batch_per_block(sq, sk, b, np)
if self.attn_mask_type == AttnMaskType.causal:
if attn_batches % batch_per_block == 0:
return True
else:
if sq % batch_per_block == 0:
return True
return False
def forward_fused_softmax(self, input, mask):
b, np, sq, sk = input.size()
scale = self.scale if self.scale is not None else 1.0
if self.attn_mask_type == AttnMaskType.causal:
assert sq == sk, "causal mask is only for self attention"
# input is 3D tensor (attn_batches, sq, sk)
input = input.view(-1, sq, sk)
probs = ScaledUpperTriangMaskedSoftmax.apply(input, scale)
return probs.view(b, np, sq, sk)
else:
# input is 4D tensor (b, np, sq, sk)
return ScaledMaskedSoftmax.apply(input, mask, scale)
def forward_torch_softmax(self, input, mask):
if self.input_in_float16 and self.softmax_in_fp32:
input = input.float()
if self.scale is not None:
input = input * self.scale
mask_output = self.mask_func(input, mask) if mask is not None else input
probs = torch.nn.Softmax(dim=-1)(mask_output)
if self.input_in_float16 and self.softmax_in_fp32:
if self.input_in_fp16:
probs = probs.half()
else:
probs = probs.bfloat16()
return probs
@staticmethod
def get_batch_per_block(sq, sk, b, np):
2022-01-13 08:47:17 +00:00
try:
import colossal_scaled_masked_softmax
except ImportError:
raise RuntimeError('ScaledMaskedSoftmax requires cuda extensions')
2021-12-21 04:19:52 +00:00
return colossal_scaled_masked_softmax.get_batch_per_block(sq, sk, b, np)