|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.inference.modeling.layers.attention import copy_to_cache
|
|
|
|
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
|
|
|
from colossalai.kernel.triton import copy_kv_to_blocked_cache
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
from tests.test_infer.test_kernels.cuda.test_kv_cache_memcpy import prepare_data as prepare_data_new_kcache_layout
|
|
|
|
from tests.test_infer.test_kernels.triton.test_kvcache_copy import prepare_data
|
|
|
|
|
|
|
|
try:
|
|
|
|
import triton # noqa
|
|
|
|
except ImportError:
|
|
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
|
|
|
|
inference_ops = InferenceOpsLoader().load()
|
|
|
|
|
|
|
|
HEAD_DIM = 128
|
|
|
|
BATCH = 16
|
|
|
|
BLOCK_SIZE = 32
|
|
|
|
SAME_LEN = True
|
|
|
|
WARM_UPS = 10
|
|
|
|
REPS = 100
|
|
|
|
configs = [
|
|
|
|
triton.testing.Benchmark(
|
|
|
|
x_names=["KV_SEQ_LEN"],
|
|
|
|
x_vals=[2**i for i in range(8, 13)],
|
|
|
|
line_arg="provider",
|
|
|
|
line_vals=["torch_copy_func", "triton_copy_func", "triton_new_kcache_layout", "cuda_copy_func"],
|
|
|
|
line_names=["torch_copy_func", "triton_copy_func", "triton_new_kcache_layout", "cuda_copy_func"],
|
|
|
|
styles=[("red", "-"), ("blue", "-"), ("yellow", "-"), ("green", "-")],
|
|
|
|
ylabel="ms",
|
|
|
|
plot_name=f"kvcache_copy_decoding_stage-batch-{BATCH}",
|
|
|
|
args={"bsz": BATCH, "block_size": 16, "max_seq_len": 8192, "num_kv_heads": 16, "same_context_len": True},
|
|
|
|
)
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@triton.testing.perf_report(configs)
|
|
|
|
def benchmark_kvcache_copy(
|
|
|
|
provider: str,
|
|
|
|
bsz: int,
|
|
|
|
block_size: int,
|
|
|
|
max_seq_len: int,
|
|
|
|
KV_SEQ_LEN: int, # maximum past kv length (unequal context lens in batch) or past kv len (equal context lens)
|
|
|
|
num_kv_heads: int,
|
|
|
|
same_context_len: bool,
|
|
|
|
):
|
|
|
|
dtype = torch.float16
|
|
|
|
device = get_current_device()
|
|
|
|
|
|
|
|
assert KV_SEQ_LEN <= max_seq_len, "Assigned maximum kv length must be smaller or equal to maximum seq len"
|
|
|
|
|
|
|
|
new_k, new_v, k_cache, v_cache, context_lengths, block_tables = prepare_data(
|
|
|
|
bsz,
|
|
|
|
num_kv_heads,
|
|
|
|
HEAD_DIM,
|
|
|
|
block_size,
|
|
|
|
max_seq_len // block_size,
|
|
|
|
same_context_len,
|
|
|
|
KV_SEQ_LEN,
|
|
|
|
device=device,
|
|
|
|
dtype=dtype,
|
|
|
|
)
|
|
|
|
|
|
|
|
quantiles = [0.5, 0.2, 0.8]
|
|
|
|
if provider == "torch_copy_func":
|
|
|
|
fn = lambda: copy_to_cache(new_k, k_cache, lengths=context_lengths, block_tables=block_tables, type="decoding")
|
|
|
|
elif provider == "triton_copy_func":
|
|
|
|
fn = lambda: copy_kv_to_blocked_cache(new_k, new_v, k_cache, v_cache, context_lengths, block_tables)
|
|
|
|
elif provider == "triton_new_kcache_layout":
|
|
|
|
# NOTE New kcache layout (num_blocks, num_kv_heads, head_dim // x, block_size, x) to be applied
|
|
|
|
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
|
|
|
k_cache_shape = (bsz * max_seq_len // block_size, num_kv_heads, HEAD_DIM // x, block_size, x)
|
|
|
|
k_cache = torch.zeros(size=k_cache_shape, dtype=dtype, device=device) # update k_cache layout
|
|
|
|
fn = lambda: copy_kv_to_blocked_cache(
|
|
|
|
new_k, new_v, k_cache, v_cache, context_lengths, block_tables, use_new_kcache_layout=True
|
|
|
|
)
|
|
|
|
elif provider == "cuda_copy_func":
|
|
|
|
_, _, k_cache, _, _, _, _, _, _ = prepare_data_new_kcache_layout(
|
|
|
|
bsz, num_kv_heads, block_size, max_seq_len // block_size, context_lengths - 1, device, dtype
|
|
|
|
)
|
|
|
|
new_k = new_k.squeeze(1) if new_k.dim() == 4 else new_k
|
|
|
|
new_v = new_v.squeeze(1) if new_v.dim() == 4 else new_v
|
|
|
|
fn = lambda: inference_ops.decode_kv_cache_memcpy(new_k, new_v, k_cache, v_cache, context_lengths, block_tables)
|
|
|
|
|
|
|
|
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
|
|
|
return ms, min_ms, max_ms
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
benchmark_kvcache_copy.run(save_path=".", print_data=True)
|