2022-08-26 02:34:21 +00:00
|
|
|
from typing import List, Set, Tuple, Dict
|
|
|
|
import torch
|
|
|
|
from torch.fx import GraphModule, Node
|
|
|
|
import math
|
|
|
|
from .linearize import linearize
|
|
|
|
from .utils import *
|
|
|
|
from colossalai.fx.profiler import profile_function, profile_module
|
|
|
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
|
|
|
|
|
|
|
|
|
|
|
# this is the python compute table code from rotor
|
|
|
|
# https://gitlab.inria.fr/hiepacs/rotor
|
|
|
|
# paper link: https://hal.inria.fr/hal-02352969
|
|
|
|
def _compute_table(chain: Chain, mmax) -> Tuple:
|
|
|
|
"""Returns the optimal table: a tuple containing:
|
|
|
|
Opt[m][lmin][lmax] with lmin = 0...chain.length
|
|
|
|
and lmax = lmin...chain.length (lmax is not included) and m = 0...mmax
|
|
|
|
what[m][lmin][lmax] is (True,) if the optimal choice is a chain checkpoint
|
|
|
|
(False, j) if the optimal choice is a leaf checkpoint of length j
|
|
|
|
The computation uses dynamic programming"""
|
|
|
|
|
|
|
|
fw = chain.fweight + [0] ## forward time
|
|
|
|
bw = chain.bweight ## backward time, not used
|
|
|
|
cw = chain.cweight + [0] ## size of x (and of y)
|
|
|
|
cbw = chain.cbweight + [0] ## size of xbar
|
|
|
|
fwd_tmp = chain.fwd_tmp + [0]
|
|
|
|
bwd_tmp = chain.bwd_tmp + [0]
|
|
|
|
|
|
|
|
# Build table
|
|
|
|
opt = [[{} for _ in range(chain.length + 1)] for _ in range(mmax + 1)]
|
|
|
|
what = [[{} for _ in range(chain.length + 1)] for _ in range(mmax + 1)]
|
|
|
|
## Last one is a dict because its indices go from i to l. Renumbering will wait for C implementation
|
|
|
|
|
|
|
|
# Initialize borders of the tables for lmax-lmin = 0
|
|
|
|
for m in range(mmax + 1):
|
|
|
|
for i in range(chain.length + 1):
|
|
|
|
#lmax-lmin = 0
|
|
|
|
limit = max(cw[i + 1] + cbw[i + 1] + fwd_tmp[i], cw[i] + cw[i + 1] + cbw[i + 1] + bwd_tmp[i])
|
|
|
|
if m >= limit: ## Equation (1)
|
|
|
|
opt[m][i][i] = fw[i] + bw[i]
|
|
|
|
else:
|
|
|
|
opt[m][i][i] = float("inf")
|
|
|
|
|
|
|
|
# Compute everything
|
|
|
|
for m in range(mmax + 1):
|
|
|
|
for d in range(1, chain.length + 1):
|
|
|
|
for i in range(chain.length + 1 - d):
|
|
|
|
# for idx in range(i+1, chain.length + 1):
|
|
|
|
idx = i + d
|
|
|
|
mmin = cw[idx + 1] + cw[i + 1] + fwd_tmp[i]
|
|
|
|
if idx > i + 1:
|
|
|
|
mmin = max(mmin, cw[idx + 1] + max(cw[j] + cw[j + 1] + fwd_tmp[j] for j in range(i + 1, idx)))
|
|
|
|
if m < mmin:
|
|
|
|
opt[m][i][idx] = float("inf")
|
|
|
|
else:
|
|
|
|
leaf_checkpoints = [(j, sum(fw[i:j]) + opt[m - cw[j]][j][idx] + opt[m][i][j - 1])
|
|
|
|
for j in range(i + 1, idx + 1)
|
|
|
|
if m >= cw[j]]
|
|
|
|
if leaf_checkpoints:
|
|
|
|
best_leaf = min(leaf_checkpoints, key=lambda t: t[1])
|
|
|
|
else:
|
|
|
|
best_leaf = None
|
|
|
|
if m >= cbw[i + 1]:
|
|
|
|
chain_checkpoint = opt[m][i][i] + opt[m - cbw[i + 1]][i + 1][idx]
|
|
|
|
else:
|
|
|
|
chain_checkpoint = float("inf")
|
|
|
|
if best_leaf and best_leaf[1] <= chain_checkpoint:
|
|
|
|
opt[m][i][idx] = best_leaf[1]
|
|
|
|
what[m][i][idx] = (False, best_leaf[0])
|
|
|
|
else:
|
|
|
|
opt[m][i][idx] = chain_checkpoint
|
|
|
|
what[m][i][idx] = (True,)
|
|
|
|
return (opt, what)
|
|
|
|
|
|
|
|
|
2022-08-26 07:47:08 +00:00
|
|
|
def _rec(chain: Chain, lmin, lmax, cmem, opt_table):
|
2022-08-26 02:34:21 +00:00
|
|
|
""" chain : the class describing the AC graph
|
|
|
|
lmin : index of the first forward to execute
|
|
|
|
lmax : upper bound index of the last forward to execute (not included)
|
|
|
|
cmem : number of available memory slots
|
|
|
|
Return the optimal sequence of makespan Opt_hete[cmem][lmin][lmax-lmin]"""
|
|
|
|
if cmem <= 0:
|
|
|
|
raise ValueError("Can not process a chain with negative memory {cmem}".format(cmem=cmem))
|
|
|
|
opt, what = opt_table
|
|
|
|
sequence = Sequence(Function("Persistent", lmax - lmin, cmem))
|
|
|
|
if opt[cmem][lmin][lmax] == float("inf"):
|
|
|
|
raise ValueError("Can not process this chain from index {lmin} to {lmax} with memory {cmem}".format(lmin=lmin,
|
|
|
|
lmax=lmax,
|
|
|
|
cmem=cmem))
|
|
|
|
if lmin == lmax:
|
|
|
|
if lmin == chain.length:
|
|
|
|
sequence.insert(Loss())
|
|
|
|
else:
|
|
|
|
sequence.insert(ForwardEnable(lmin))
|
|
|
|
sequence.insert(Backward(lmin))
|
|
|
|
return sequence
|
|
|
|
|
|
|
|
if what[cmem][lmin][lmax][0]:
|
|
|
|
sequence.insert(ForwardEnable(lmin))
|
2022-08-26 07:47:08 +00:00
|
|
|
sequence.insert_sequence(_rec(chain, lmin + 1, lmax, cmem - chain.cbweight[lmin + 1], opt_table))
|
2022-08-26 02:34:21 +00:00
|
|
|
sequence.insert(Backward(lmin))
|
|
|
|
else:
|
|
|
|
j = what[cmem][lmin][lmax][1]
|
|
|
|
sequence.insert(ForwardCheck(lmin))
|
|
|
|
for k in range(lmin + 1, j):
|
|
|
|
sequence.insert(ForwardNograd(k))
|
2022-08-26 07:47:08 +00:00
|
|
|
sequence.insert_sequence(_rec(chain, j, lmax, cmem - chain.cweight[j], opt_table))
|
2022-08-26 02:34:21 +00:00
|
|
|
sequence.insert_sequence(_rec(chain, lmin, j - 1, cmem, opt_table))
|
|
|
|
return sequence
|
|
|
|
|
|
|
|
|
|
|
|
def _discretize(mem_unit, values):
|
|
|
|
return [math.ceil(value / mem_unit) for value in values]
|
|
|
|
|
|
|
|
|
|
|
|
def _construct_chain(node_dict: Dict[int, Node], data: torch.Tensor, mem_unit: int) -> Chain:
|
|
|
|
|
|
|
|
fwd_time = []
|
|
|
|
bwd_time = []
|
|
|
|
xbar_sizes = [data.numel() * data.element_size()]
|
|
|
|
x_sizes = [data.numel() * data.element_size()]
|
|
|
|
|
|
|
|
# currently we can't get the temp memory needed in fwd and bwd
|
|
|
|
tmp_fwd = [0] * len(node_dict)
|
|
|
|
tmp_bwd = [0] * (len(node_dict) + 1)
|
|
|
|
|
|
|
|
for key in node_dict.keys():
|
|
|
|
fwd_time.append(0)
|
|
|
|
bwd_time.append(0)
|
|
|
|
xbar_sizes.append(0)
|
|
|
|
x_sizes.append(node_dict[key][-1].meta['tensor_meta'].numel *
|
|
|
|
torch.tensor([], dtype=node_dict[key][-1].meta['tensor_meta'].dtype).element_size())
|
|
|
|
for node in node_dict[key]:
|
|
|
|
fwd_time[-1] += node.__flops__
|
|
|
|
|
|
|
|
# currently we haven't patched the backward flops count
|
|
|
|
bwd_time[-1] += node.__flops__ * 2
|
|
|
|
|
|
|
|
xbar_sizes[-1] += node.__activation__
|
|
|
|
|
|
|
|
xbar_sizes[-1] = max(xbar_sizes[-1], x_sizes[-1])
|
|
|
|
|
|
|
|
bwd_time.append(0)
|
|
|
|
|
|
|
|
xbar_sizes = _discretize(mem_unit, xbar_sizes)
|
|
|
|
x_sizes = _discretize(mem_unit, x_sizes)
|
|
|
|
tmp_fwd = _discretize(mem_unit, tmp_fwd)
|
|
|
|
tmp_bwd = _discretize(mem_unit, tmp_bwd)
|
|
|
|
|
|
|
|
return Chain(fwd_time, bwd_time, x_sizes, xbar_sizes, tmp_fwd, tmp_bwd)
|
|
|
|
|
|
|
|
|
|
|
|
def _annotate_from_sequence(sequence: Sequence, node_dict: Dict[int, Node]) -> GraphModule:
|
|
|
|
op_list = sequence.list_operations()
|
|
|
|
loss_op = [op for op in op_list if isinstance(op, Loss)][0]
|
|
|
|
op_list = op_list[:op_list.index(loss_op)]
|
|
|
|
ckpt_idx = 0
|
|
|
|
in_ckpt = False
|
|
|
|
ckpt_region = []
|
|
|
|
for idx, op in enumerate(op_list, 1):
|
|
|
|
if in_ckpt:
|
|
|
|
if isinstance(op, ForwardNograd):
|
|
|
|
ckpt_region.append(idx)
|
|
|
|
|
|
|
|
elif isinstance(op, ForwardEnable):
|
|
|
|
in_ckpt = False
|
|
|
|
for idx in ckpt_region:
|
|
|
|
for node in node_dict[idx]:
|
|
|
|
setattr(node, "activation_checkpoint", ckpt_idx)
|
|
|
|
|
|
|
|
ckpt_idx += 1
|
|
|
|
ckpt_region = []
|
|
|
|
|
|
|
|
elif isinstance(op, ForwardCheck):
|
|
|
|
for idx in ckpt_region:
|
|
|
|
for node in node_dict[idx]:
|
|
|
|
setattr(node, "activation_checkpoint", ckpt_idx)
|
|
|
|
|
|
|
|
ckpt_idx += 1
|
|
|
|
ckpt_region = [idx]
|
|
|
|
|
|
|
|
else:
|
|
|
|
if isinstance(op, ForwardCheck):
|
|
|
|
in_ckpt = True
|
|
|
|
ckpt_region.append(idx)
|
|
|
|
|
|
|
|
|
|
|
|
def solver_rotor(gm: GraphModule, data: torch.Tensor, mem_limit: int, mem_slots: int = 500) -> GraphModule:
|
|
|
|
node_dict = linearize(gm)
|
|
|
|
mem_unit = mem_limit // mem_slots
|
|
|
|
MetaInfoProp(gm).run(data)
|
|
|
|
chain: Chain = _construct_chain(node_dict, data, mem_unit)
|
|
|
|
opt_table = _compute_table(chain, mem_slots)
|
|
|
|
sequence = _rec(chain, 0, chain.length, mem_slots - chain.cweight[0], opt_table)
|
|
|
|
_annotate_from_sequence(sequence, node_dict)
|
|
|
|
return gm
|