mirror of https://github.com/hpcaitech/ColossalAI
124 lines
5.0 KiB
Python
124 lines
5.0 KiB
Python
|
import argparse
|
||
|
import logging
|
||
|
import os
|
||
|
import time
|
||
|
|
||
|
import torch
|
||
|
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
||
|
from auto_gptq.nn_modules.qlinear import GeneralQuantLinear
|
||
|
from transformers import AutoTokenizer, BloomForCausalLM, BloomTokenizerFast, LlamaForCausalLM, LlamaTokenizer
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.inference.tensor_parallel.engine import TPInferEngine
|
||
|
from colossalai.logging import disable_existing_loggers
|
||
|
from colossalai.shardformer import ShardConfig
|
||
|
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
|
||
|
|
||
|
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||
|
|
||
|
|
||
|
def print_perf_stats(latency_set, config, bs, warmup=3):
|
||
|
# trim warmup queries
|
||
|
latency_set = list(latency_set)
|
||
|
latency_set = latency_set[warmup:]
|
||
|
count = len(latency_set)
|
||
|
|
||
|
if count > 0:
|
||
|
latency_set.sort()
|
||
|
avg = sum(latency_set) / count
|
||
|
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
|
||
|
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
||
|
num_bytes = 2 # float16
|
||
|
|
||
|
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
||
|
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
||
|
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
||
|
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
|
||
|
|
||
|
|
||
|
def bench_bloom(args):
|
||
|
|
||
|
pretrained_model_dir = args.path
|
||
|
quantized_model_dir = args.quantized_path
|
||
|
max_batch_size = args.batch_size
|
||
|
max_input_len = args.input_len
|
||
|
max_output_len = args.output_len
|
||
|
|
||
|
tokenizer = BloomTokenizerFast.from_pretrained(pretrained_model_dir)
|
||
|
tokenizer.pad_token = tokenizer.eos_token
|
||
|
|
||
|
# load quantized model to the first GPU
|
||
|
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir,
|
||
|
device=torch.cuda.current_device(),
|
||
|
inject_fused_attention=False)
|
||
|
|
||
|
model = model.half()
|
||
|
|
||
|
model_config = model.config
|
||
|
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
|
||
|
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
|
||
|
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
||
|
|
||
|
input_tokens = {
|
||
|
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'),
|
||
|
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda')
|
||
|
}
|
||
|
|
||
|
# init TPInferEngine and shard the original model
|
||
|
# To benchmark torch original, comment out the line of optimizing model
|
||
|
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False,
|
||
|
inference_only=True,
|
||
|
inference_gptq=True)
|
||
|
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
|
||
|
|
||
|
# prepare data for generation
|
||
|
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
||
|
input_tokens = {
|
||
|
"input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)),
|
||
|
"attention_mask": torch.ones((max_batch_size, max_input_len))
|
||
|
}
|
||
|
for t in input_tokens:
|
||
|
if torch.is_tensor(input_tokens[t]):
|
||
|
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
|
||
|
# print(f" input_tokens[{t}].shape: {input_tokens[t].shape}")
|
||
|
|
||
|
iters = 10
|
||
|
times = []
|
||
|
for i in range(iters):
|
||
|
torch.cuda.synchronize()
|
||
|
start = time.time()
|
||
|
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
|
||
|
torch.cuda.synchronize()
|
||
|
end = time.time()
|
||
|
out_len = outputs.shape[1]
|
||
|
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s")
|
||
|
times.append((end - start) / (out_len - max_input_len))
|
||
|
|
||
|
print_perf_stats(times, model_config, max_batch_size)
|
||
|
|
||
|
|
||
|
def check_bloom(rank, world_size, port, args):
|
||
|
disable_existing_loggers()
|
||
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
|
bench_bloom(args)
|
||
|
|
||
|
|
||
|
@rerun_if_address_is_in_use()
|
||
|
@clear_cache_before_run()
|
||
|
def test_bloom(args):
|
||
|
spawn(check_bloom, args.tp_size, args=args)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('-p', '--path', type=str, help='Model path', required=True)
|
||
|
parser.add_argument('-q', '--quantized_path', type=str, help='Model path', required=True)
|
||
|
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size')
|
||
|
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size')
|
||
|
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length')
|
||
|
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length')
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
test_bloom(args)
|