2022-04-11 08:47:57 +00:00
|
|
|
import gc
|
|
|
|
from collections import namedtuple
|
|
|
|
|
2023-09-18 08:31:06 +00:00
|
|
|
import psutil
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
2022-04-12 06:57:54 +00:00
|
|
|
from packaging import version
|
2022-04-11 08:47:57 +00:00
|
|
|
|
2023-09-18 08:31:06 +00:00
|
|
|
from colossalai.legacy.core import global_context as gpc
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
2022-04-11 08:47:57 +00:00
|
|
|
_GLOBAL_CUDA_MEM_FRACTION = 1.0
|
2022-04-19 08:05:22 +00:00
|
|
|
_GLOBAL_CPU_MEM_CAPACITY = -1
|
2022-04-11 08:47:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
def _bytes_to_MB(val, decimal=2):
|
|
|
|
"""A byte-to-Megabyte converter, default using binary notation.
|
|
|
|
|
|
|
|
:param val: X bytes to convert
|
|
|
|
:return: X' MB
|
|
|
|
"""
|
|
|
|
return round(val / (1024 * 1024), decimal)
|
|
|
|
|
|
|
|
|
|
|
|
# copy from PatrickStar
|
|
|
|
def _get_cpu_memory_info():
|
|
|
|
ps_mem_info = namedtuple("ps_mem_info", ["total", "free", "cached", "buffers", "used"])
|
|
|
|
try:
|
|
|
|
# psutil reads the memory info from /proc/memory_info,
|
|
|
|
# which results in returning the host memory instead of
|
|
|
|
# that of container.
|
|
|
|
# Here we try to read the container memory with method in:
|
|
|
|
# https://stackoverflow.com/a/46213331/5163915
|
|
|
|
mems = {}
|
|
|
|
with open("/sys/fs/cgroup/memory/memory.meminfo", "rb") as f:
|
|
|
|
for line in f:
|
|
|
|
fields = line.split()
|
|
|
|
mems[fields[0]] = int(fields[1]) * 1024
|
|
|
|
total = mems[b"MemTotal:"]
|
|
|
|
free = mems[b"MemFree:"]
|
|
|
|
cached = mems[b"Cached:"]
|
|
|
|
buffers = mems[b"Buffers:"]
|
|
|
|
used = total - free - cached - buffers
|
|
|
|
if used < 0:
|
|
|
|
used = total - free
|
|
|
|
mem_info = ps_mem_info(total=total, free=free, cached=cached, buffers=buffers, used=used)
|
|
|
|
except FileNotFoundError:
|
|
|
|
mems = psutil.virtual_memory()
|
|
|
|
mem_info = ps_mem_info(
|
|
|
|
total=mems.total,
|
|
|
|
free=mems.free,
|
|
|
|
cached=mems.cached,
|
|
|
|
buffers=mems.buffers,
|
|
|
|
used=mems.used,
|
|
|
|
)
|
|
|
|
return mem_info
|
|
|
|
|
|
|
|
|
|
|
|
def report_memory_usage(message, logger=None, report_cpu=False):
|
|
|
|
"""Calculate and print RAM usage (in GB)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
message (str): A prefix message to add in the log.
|
|
|
|
logger (:class:`colossalai.logging.DistributedLogger`): The logger used to record memory information.
|
|
|
|
report_cpu (bool, optional): Whether to report CPU memory.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
EnvironmentError: Raise error if no distributed environment has been initialized.
|
|
|
|
"""
|
2023-09-18 08:31:06 +00:00
|
|
|
if not dist.is_initialized():
|
2022-04-11 08:47:57 +00:00
|
|
|
raise EnvironmentError("No distributed environment is initialized")
|
|
|
|
|
|
|
|
gpu_allocated = _bytes_to_MB(torch.cuda.memory_allocated())
|
|
|
|
gpu_max_allocated = _bytes_to_MB(torch.cuda.max_memory_allocated())
|
|
|
|
gpu_cached = _bytes_to_MB(torch.cuda.memory_reserved())
|
|
|
|
gpu_max_cached = _bytes_to_MB(torch.cuda.max_memory_reserved())
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
full_log = (
|
|
|
|
f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, "
|
2022-04-11 08:47:57 +00:00
|
|
|
+ f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB"
|
2023-09-19 06:20:26 +00:00
|
|
|
)
|
2022-04-11 08:47:57 +00:00
|
|
|
|
|
|
|
if report_cpu:
|
|
|
|
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports
|
|
|
|
gc.collect()
|
|
|
|
vm_stats = psutil.virtual_memory()
|
|
|
|
vm_used = _bytes_to_MB(vm_stats.total - vm_stats.available)
|
|
|
|
full_log += f", CPU Virtual Memory: used = {vm_used} MB, percent = {vm_stats.percent}%"
|
|
|
|
|
|
|
|
if logger is None:
|
|
|
|
logger = get_dist_logger()
|
|
|
|
logger.info(full_log)
|
|
|
|
|
|
|
|
# get the peak memory to report correct data, so reset the counter for the next call
|
2023-09-19 06:20:26 +00:00
|
|
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
2022-04-11 08:47:57 +00:00
|
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
|
|
|
|
|
|
|
|
def colo_device_memory_capacity(device: torch.device) -> int:
|
|
|
|
"""
|
|
|
|
Get the capacity of the memory of the device
|
|
|
|
|
|
|
|
Args:
|
|
|
|
device (torch.device): a device
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
int: size in byte
|
|
|
|
"""
|
|
|
|
assert isinstance(device, torch.device)
|
2023-09-19 06:20:26 +00:00
|
|
|
if device.type == "cpu":
|
2022-04-12 06:57:54 +00:00
|
|
|
# In the context of 1-CPU-N-GPU, the memory capacity of the current process is 1/N overall CPU memory.
|
2022-04-19 08:05:22 +00:00
|
|
|
return colo_get_cpu_memory_capacity() / gpc.num_processes_on_current_node
|
2023-09-19 06:20:26 +00:00
|
|
|
if device.type == "cuda":
|
2022-04-11 08:47:57 +00:00
|
|
|
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
|
|
|
|
|
|
|
|
|
|
|
|
def colo_device_memory_used(device: torch.device) -> int:
|
|
|
|
"""
|
|
|
|
Get the device memory on device belonging to the current process.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
device (torch.device): a device
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
int: memory size in bytes
|
|
|
|
"""
|
2023-09-19 06:20:26 +00:00
|
|
|
if device.type == "cpu":
|
2022-04-11 08:47:57 +00:00
|
|
|
mem_info = _get_cpu_memory_info()
|
2022-04-12 06:57:54 +00:00
|
|
|
# In the context of 1-CPU-N-GPU, the memory usage of the current process is 1/N CPU memory used.
|
|
|
|
# Each process consumes the same amount of memory.
|
|
|
|
ret = mem_info.used / gpc.num_processes_on_current_node
|
2022-04-11 08:47:57 +00:00
|
|
|
return ret
|
2023-09-19 06:20:26 +00:00
|
|
|
elif device.type == "cuda":
|
2022-04-11 08:47:57 +00:00
|
|
|
ret: int = torch.cuda.memory_allocated(device)
|
|
|
|
# get the peak memory to report correct data, so reset the counter for the next call
|
2023-09-19 06:20:26 +00:00
|
|
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
2022-04-11 08:47:57 +00:00
|
|
|
torch.cuda.reset_peak_memory_stats(device)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
def colo_set_process_memory_fraction(ratio: float) -> None:
|
2023-09-18 08:31:06 +00:00
|
|
|
"""colo_set_process_memory_fraction
|
2022-04-11 08:47:57 +00:00
|
|
|
|
|
|
|
set how much cuda memory used on the gpu belonging to the current process.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
ratio (float): a ratio between 0. ~ 1.
|
|
|
|
"""
|
2023-09-19 06:20:26 +00:00
|
|
|
if version.parse(torch.__version__) < version.parse("1.8"):
|
|
|
|
logger = get_dist_logger("colo_set_process_memory_fraction")
|
|
|
|
logger.warning("colo_set_process_memory_fraction failed because torch version is less than 1.8")
|
2022-04-12 06:57:54 +00:00
|
|
|
return
|
2022-04-11 08:47:57 +00:00
|
|
|
global _GLOBAL_CUDA_MEM_FRACTION
|
|
|
|
_GLOBAL_CUDA_MEM_FRACTION = ratio
|
|
|
|
torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_current_device())
|
2022-04-19 08:05:22 +00:00
|
|
|
|
|
|
|
|
|
|
|
def colo_set_cpu_memory_capacity(size: int) -> None:
|
|
|
|
global _GLOBAL_CPU_MEM_CAPACITY
|
|
|
|
mem_info = _get_cpu_memory_info()
|
|
|
|
total_size = mem_info.total
|
|
|
|
if size <= total_size:
|
|
|
|
_GLOBAL_CPU_MEM_CAPACITY = size
|
|
|
|
else:
|
|
|
|
_GLOBAL_CPU_MEM_CAPACITY = total_size
|
|
|
|
|
|
|
|
|
|
|
|
def colo_get_cpu_memory_capacity() -> int:
|
|
|
|
"""
|
|
|
|
Get the cpu memory capacity. We may not use all of it.
|
|
|
|
Returns:
|
|
|
|
int: _description_
|
|
|
|
"""
|
|
|
|
global _GLOBAL_CPU_MEM_CAPACITY
|
|
|
|
if _GLOBAL_CPU_MEM_CAPACITY == -1:
|
|
|
|
mem_info = _get_cpu_memory_info()
|
|
|
|
return mem_info.total
|
|
|
|
else:
|
|
|
|
return _GLOBAL_CPU_MEM_CAPACITY
|