2021-10-28 16:21:23 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
2023-06-07 08:08:37 +00:00
|
|
|
# adapted from torch.utils.data.DistributedSampler
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
import math
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
import random
|
2023-09-04 11:56:42 +00:00
|
|
|
from typing import Iterator, TypeVar
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2023-09-04 11:56:42 +00:00
|
|
|
import numpy as np
|
2021-10-28 16:21:23 +00:00
|
|
|
import torch
|
2023-09-04 11:56:42 +00:00
|
|
|
from torch.utils.data import DataLoader, Dataset, Sampler
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2023-09-18 08:31:06 +00:00
|
|
|
from colossalai.legacy.context.parallel_mode import ParallelMode
|
|
|
|
from colossalai.legacy.core import global_context as gpc
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
T_co = TypeVar("T_co", covariant=True)
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
class DataParallelSampler(Sampler):
|
2022-03-25 05:02:39 +00:00
|
|
|
"""A data sampler for distributed data parallelism.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataset (:class:`torch.utils.data.Dataset`): The Dataset for sampling.
|
|
|
|
shuffle (bool, optional): Whether to shuffle data, defaults to False.
|
|
|
|
seed (int, optional): The random seed used for sampling, defaults to 0.
|
|
|
|
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
|
|
|
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
|
|
|
the batch size, then the last batch will be smaller, defaults to False.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
|
|
|
|
2023-09-04 11:56:42 +00:00
|
|
|
def __init__(self, dataset: Dataset, shuffle: bool = False, seed: int = 0, drop_last: bool = False) -> None:
|
2021-10-28 16:21:23 +00:00
|
|
|
self.dataset = dataset
|
|
|
|
self.num_replicas = gpc.get_world_size(ParallelMode.DATA)
|
|
|
|
self.rank = gpc.get_local_rank(ParallelMode.DATA)
|
|
|
|
self.epoch = 0
|
|
|
|
self.drop_last = drop_last
|
|
|
|
# If the dataset length is evenly divisible by # of replicas, then there
|
|
|
|
# is no need to drop any data, since the dataset will be split equally.
|
|
|
|
# type: ignore[arg-type]
|
|
|
|
if self.drop_last and len(self.dataset) % self.num_replicas != 0:
|
|
|
|
# Split to nearest available length that is evenly divisible.
|
|
|
|
# This is to ensure each rank receives the same amount of data when
|
|
|
|
# using this Sampler.
|
|
|
|
self.num_samples = math.ceil(
|
|
|
|
# `type:ignore` is required because Dataset cannot provide a default __len__
|
|
|
|
# see NOTE in pytorch/torch/utils/data/sampler.py
|
2023-09-19 06:20:26 +00:00
|
|
|
(len(self.dataset) - self.num_replicas)
|
|
|
|
/ self.num_replicas # type: ignore[arg-type]
|
2021-10-28 16:21:23 +00:00
|
|
|
)
|
|
|
|
else:
|
2023-09-19 06:20:26 +00:00
|
|
|
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
|
2021-10-28 16:21:23 +00:00
|
|
|
self.total_size = self.num_samples * self.num_replicas
|
|
|
|
self.shuffle = shuffle
|
|
|
|
self.seed = seed
|
|
|
|
|
|
|
|
def __iter__(self) -> Iterator[T_co]:
|
|
|
|
if self.shuffle:
|
|
|
|
# deterministically shuffle based on epoch and seed
|
|
|
|
g = torch.Generator()
|
|
|
|
g.manual_seed(self.seed + self.epoch)
|
|
|
|
# type: ignore[arg-type]
|
|
|
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
|
|
|
# update for next epoch so that there is no need to call
|
|
|
|
# set_epoch manually
|
|
|
|
self.epoch += 1
|
2021-10-28 16:21:23 +00:00
|
|
|
else:
|
2023-09-19 06:20:26 +00:00
|
|
|
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
if not self.drop_last:
|
|
|
|
# add extra samples to make it evenly divisible
|
|
|
|
padding_size = self.total_size - len(indices)
|
|
|
|
if padding_size <= len(indices):
|
|
|
|
indices += indices[:padding_size]
|
|
|
|
else:
|
2023-09-04 11:56:42 +00:00
|
|
|
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
|
2021-10-28 16:21:23 +00:00
|
|
|
else:
|
|
|
|
# remove tail of data to make it evenly divisible.
|
2023-09-19 06:20:26 +00:00
|
|
|
indices = indices[: self.total_size]
|
2021-10-28 16:21:23 +00:00
|
|
|
assert len(indices) == self.total_size
|
|
|
|
|
|
|
|
# subsample
|
2023-09-19 06:20:26 +00:00
|
|
|
indices = indices[self.rank : self.total_size : self.num_replicas]
|
2021-10-28 16:21:23 +00:00
|
|
|
assert len(indices) == self.num_samples
|
|
|
|
|
|
|
|
return iter(indices)
|
|
|
|
|
|
|
|
def __len__(self) -> int:
|
|
|
|
return self.num_samples
|
|
|
|
|
|
|
|
def set_epoch(self, epoch: int) -> None:
|
|
|
|
r"""Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
|
|
|
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
|
|
|
sampler will yield the same ordering.
|
|
|
|
|
2022-03-25 05:02:39 +00:00
|
|
|
Args:
|
|
|
|
epoch (int): Epoch number.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
|
|
|
self.epoch = epoch
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
def get_dataloader(
|
|
|
|
dataset, shuffle=False, seed=1024, add_sampler=True, drop_last=False, pin_memory=False, num_workers=0, **kwargs
|
|
|
|
):
|
2022-03-25 05:02:39 +00:00
|
|
|
r"""Set up a deterministic dataloader (also configure seed workers, samplers and whether shuffle or not)
|
|
|
|
|
|
|
|
Note:
|
|
|
|
When pipeline parallel is enabled, shuffle cannot be True as it will result in mismatch between input data
|
|
|
|
on the 1st stage and label on the last stage.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataset (:class:`torch.utils.data.Dataset`): The dataset to be loaded.
|
|
|
|
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
|
|
|
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
|
|
|
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
|
|
|
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
|
|
|
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
|
|
|
the batch size, then the last batch will be smaller, defaults to False.
|
|
|
|
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
|
|
|
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
|
|
|
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
|
|
|
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
2022-01-21 02:44:30 +00:00
|
|
|
"""
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
_kwargs = kwargs.copy()
|
|
|
|
|
|
|
|
if add_sampler and gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1:
|
|
|
|
sampler = DataParallelSampler(dataset, shuffle=shuffle)
|
|
|
|
else:
|
|
|
|
sampler = None
|
|
|
|
|
|
|
|
# Deterministic dataloader
|
|
|
|
def seed_worker(worker_id):
|
|
|
|
worker_seed = seed
|
|
|
|
np.random.seed(worker_seed)
|
|
|
|
torch.manual_seed(worker_seed)
|
|
|
|
random.seed(worker_seed)
|
|
|
|
|
|
|
|
if sampler is None:
|
2023-09-19 06:20:26 +00:00
|
|
|
return DataLoader(
|
|
|
|
dataset,
|
|
|
|
worker_init_fn=seed_worker,
|
|
|
|
shuffle=shuffle,
|
|
|
|
drop_last=drop_last,
|
|
|
|
pin_memory=pin_memory,
|
|
|
|
num_workers=num_workers,
|
|
|
|
**_kwargs,
|
|
|
|
)
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
else:
|
2023-09-19 06:20:26 +00:00
|
|
|
return DataLoader(
|
|
|
|
dataset,
|
|
|
|
sampler=sampler,
|
|
|
|
worker_init_fn=seed_worker,
|
|
|
|
drop_last=drop_last,
|
|
|
|
pin_memory=pin_memory,
|
|
|
|
num_workers=num_workers,
|
|
|
|
**_kwargs,
|
|
|
|
)
|