ColossalAI/colossalai/legacy/communication/utils.py

128 lines
5.0 KiB
Python
Raw Normal View History

from typing import List, Tuple, Union
2021-10-28 16:21:23 +00:00
import torch
import torch.distributed as dist
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
2021-10-28 16:21:23 +00:00
from colossalai.utils import get_current_device
TensorShape = Union[torch.Size, List[int], Tuple[int]]
2021-10-28 16:21:23 +00:00
def send_meta_helper(obj, next_rank, tensor_kwargs):
send_shape = torch.tensor(obj.size(), **tensor_kwargs)
send_ndims = torch.tensor(len(obj.size()), **tensor_kwargs)
dist.send(send_ndims, next_rank)
dist.send(send_shape, next_rank)
def send_obj_meta(obj, need_meta=True, next_rank=None) -> bool:
"""Sends obj meta information before sending a specific obj.
Since the recipient must know the shape of the obj in p2p communications,
meta information of the obj should be sent before communications. This function
synchronizes with :func:`recv_obj_meta`.
2021-10-28 16:21:23 +00:00
2022-03-25 05:02:39 +00:00
Args:
obj (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): obj to be sent.
2022-03-25 05:02:39 +00:00
need_meta (bool, optional): If False, meta information won't be sent.
next_rank (int): The rank of the next member in pipeline parallel group.
Returns:
bool: False
2021-10-28 16:21:23 +00:00
"""
if need_meta:
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
if next_rank is None:
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
2021-10-28 16:21:23 +00:00
tensor_kwargs = {"dtype": torch.long, "device": get_current_device()}
if isinstance(obj, torch.Tensor):
send_obj_nums = torch.tensor(1, **tensor_kwargs)
dist.send(send_obj_nums, next_rank)
send_meta_helper(obj, next_rank, tensor_kwargs)
else:
send_obj_nums = torch.tensor(len(obj), **tensor_kwargs)
dist.send(send_obj_nums, next_rank)
for tensor_to_send in obj:
send_meta_helper(tensor_to_send, next_rank, tensor_kwargs)
2021-10-28 16:21:23 +00:00
return False
def recv_meta_helper(prev_rank, tensor_kwargs):
recv_ndims = torch.empty((), **tensor_kwargs)
dist.recv(recv_ndims, prev_rank)
recv_shape = torch.empty(recv_ndims, **tensor_kwargs)
dist.recv(recv_shape, prev_rank)
return recv_shape
def recv_obj_meta(obj_shape, prev_rank=None) -> torch.Size:
"""Receives obj meta information before receiving a specific obj.
Since the recipient must know the shape of the obj in p2p communications,
meta information of the obj should be received before communications. This function
synchronizes with :func:`send_obj_meta`.
2021-10-28 16:21:23 +00:00
2022-03-25 05:02:39 +00:00
Args:
obj_shape (Union[:class:`torch.Size`, List[:class:`torch.Size`]]): The shape of the obj to be received.
prev_rank (int): The rank of the source of the obj.
2022-03-25 05:02:39 +00:00
Returns:
Union[:class:`torch.Size`, List[:class:`torch.Size`]]: The shape of the obj to be received.
2021-10-28 16:21:23 +00:00
"""
if obj_shape is None:
2021-10-28 16:21:23 +00:00
if prev_rank is None:
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
2021-10-28 16:21:23 +00:00
tensor_kwargs = {"dtype": torch.long, "device": get_current_device()}
recv_obj_nums = torch.empty((), **tensor_kwargs)
dist.recv(recv_obj_nums, prev_rank)
if recv_obj_nums.item() == 1:
recv_shape = recv_meta_helper(prev_rank, tensor_kwargs)
obj_shape = torch.Size(recv_shape)
else:
obj_shape = []
for i in range(recv_obj_nums.item()):
recv_shape = recv_meta_helper(prev_rank, tensor_kwargs)
obj_shape.append(torch.Size(recv_shape))
return obj_shape
def split_tensor_into_1d_equal_chunks(tensor: torch.Tensor, new_buffer=False) -> torch.Tensor:
2022-01-21 02:44:30 +00:00
"""Break a tensor into equal 1D chunks.
2022-03-25 05:02:39 +00:00
Args:
tensor (:class:`torch.Tensor`): Tensor to be split before communication.
2022-03-25 05:02:39 +00:00
new_buffer (bool, optional): Whether to use a new buffer to store sliced tensor.
2022-01-21 02:44:30 +00:00
2022-03-25 05:02:39 +00:00
Returns:
:class:`torch.Tensor`: The split tensor
2022-01-21 02:44:30 +00:00
"""
partition_size = torch.numel(tensor) // gpc.get_world_size(ParallelMode.PARALLEL_1D)
start_index = partition_size * gpc.get_local_rank(ParallelMode.PARALLEL_1D)
end_index = start_index + partition_size
if new_buffer:
data = torch.empty(partition_size, dtype=tensor.dtype, device=torch.cuda.current_device(), requires_grad=False)
data.copy_(tensor.view(-1)[start_index:end_index])
else:
data = tensor.view(-1)[start_index:end_index]
return data
def gather_split_1d_tensor(tensor: torch.Tensor) -> torch.Tensor:
2022-01-21 02:44:30 +00:00
"""Opposite of above function, gather values from model parallel ranks.
2022-03-25 05:02:39 +00:00
Args:
tensor (:class:`torch.Tensor`): Tensor to be gathered after communication.
2022-03-25 05:02:39 +00:00
Returns:
:class:`torch.Tensor`: The gathered tensor.
2022-01-21 02:44:30 +00:00
"""
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
numel = torch.numel(tensor)
numel_gathered = world_size * numel
gathered = torch.empty(numel_gathered, dtype=tensor.dtype, device=torch.cuda.current_device(), requires_grad=False)
chunks = [gathered[i * numel : (i + 1) * numel] for i in range(world_size)]
dist.all_gather(chunks, tensor, group=gpc.get_group(ParallelMode.PARALLEL_1D))
return gathered