|
|
|
from typing import Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
|
|
|
|
from .init_ctx import ZeroInitContext, no_shard_zero_context, no_shard_zero_decrator
|
|
|
|
from .shard_utils import BucketTensorShardStrategy, TensorShardStrategy
|
|
|
|
from .sharded_model import ShardedModelV2
|
|
|
|
from .sharded_optim import ShardedOptimizerV2
|
|
|
|
|
|
|
|
|
|
|
|
def convert_to_zero_v2(model: nn.Module, optimizer: torch.optim.Optimizer, model_config,
|
|
|
|
optimizer_config) -> Tuple[ShardedModelV2, ShardedOptimizerV2]:
|
|
|
|
"""
|
|
|
|
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
|
|
|
|
|
|
|
|
:param model: Your model object
|
|
|
|
:type model: :class:`torch.nn.Module`
|
|
|
|
:param optimizer_config: Your optimizer object
|
|
|
|
:type optimizer_config: :class:`dict`
|
|
|
|
|
|
|
|
:return: (model, optimizer)
|
|
|
|
:rtype: Tuple
|
|
|
|
"""
|
|
|
|
|
|
|
|
logger = get_dist_logger('convert_to_zero_v2')
|
|
|
|
|
|
|
|
logger.info(f'optimizer_config is {optimizer_config}', ranks=[0])
|
|
|
|
if optimizer_config is None:
|
|
|
|
optimizer_config = dict()
|
|
|
|
logger.info(f'model_config is {model_config}', ranks=[0])
|
|
|
|
if model_config is None:
|
|
|
|
model_config = dict()
|
|
|
|
|
|
|
|
zero_model = ShardedModelV2(model, **model_config)
|
|
|
|
zero_optimizer = ShardedOptimizerV2(zero_model, optimizer, **optimizer_config)
|
|
|
|
return zero_model, zero_optimizer
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'convert_to_zero_v2', 'ShardedModelV2', 'ShardedOptimizerV2', 'ZeroInitContext', 'no_shard_zero_context',
|
|
|
|
'no_shard_zero_decrator', 'TensorShardStrategy', 'BucketTensorShardStrategy'
|
|
|
|
]
|