2023-06-08 03:27:05 +00:00
|
|
|
from colossalai import get_default_parser
|
|
|
|
|
|
|
|
|
|
|
|
def parse_demo_args():
|
|
|
|
parser = get_default_parser()
|
2023-09-19 06:20:26 +00:00
|
|
|
parser.add_argument(
|
|
|
|
"--model_name_or_path",
|
|
|
|
type=str,
|
|
|
|
default="facebook/opt-350m",
|
|
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--output_path", type=str, default="./output_model.bin", help="The path of your saved model after finetuning."
|
|
|
|
)
|
2023-06-08 03:27:05 +00:00
|
|
|
parser.add_argument(
|
|
|
|
"--plugin",
|
|
|
|
type=str,
|
|
|
|
default="gemini",
|
2023-09-19 06:20:26 +00:00
|
|
|
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'.",
|
2023-09-09 14:45:36 +00:00
|
|
|
)
|
|
|
|
parser.add_argument("--num_epoch", type=int, default=10, help="Number of epochs.")
|
2023-09-19 06:20:26 +00:00
|
|
|
parser.add_argument(
|
|
|
|
"--batch_size", type=int, default=32, help="Batch size (per dp group) for the training dataloader."
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--learning_rate",
|
|
|
|
type=float,
|
|
|
|
default=5e-5,
|
|
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--warmup_ratio", type=float, default=0.1, help="Ratio of warmup steps against total training steps."
|
|
|
|
)
|
2023-09-09 14:45:36 +00:00
|
|
|
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
|
|
|
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
2023-06-08 03:27:05 +00:00
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def parse_benchmark_args():
|
|
|
|
parser = get_default_parser()
|
2023-09-19 06:20:26 +00:00
|
|
|
parser.add_argument(
|
|
|
|
"--model_name_or_path",
|
|
|
|
type=str,
|
|
|
|
default="facebook/opt-125m",
|
|
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
|
|
)
|
2023-06-08 03:27:05 +00:00
|
|
|
parser.add_argument(
|
|
|
|
"--plugin",
|
|
|
|
type=str,
|
|
|
|
default="gemini",
|
2023-09-19 06:20:26 +00:00
|
|
|
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--batch_size", type=int, default=32, help="Batch size (per dp group) for the training dataloader."
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--learning_rate",
|
|
|
|
type=float,
|
|
|
|
default=5e-5,
|
|
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
|
|
)
|
2023-09-09 14:45:36 +00:00
|
|
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
|
|
|
parser.add_argument("--max_train_steps", type=int, default=20, help="Total number of training steps to perform.")
|
|
|
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
|
|
|
parser.add_argument("--mem_cap", type=int, default=0, help="Limit on the usage of space for each GPU (in GB).")
|
2023-06-08 03:27:05 +00:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
2023-09-09 14:45:36 +00:00
|
|
|
return args
|