ColossalAI/examples/language/llama2/attn.py

85 lines
2.9 KiB
Python
Raw Normal View History

from types import MethodType
from typing import Optional, Tuple
import torch
import torch.nn as nn
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
SUPPORT_XFORMERS = False
SUPPORT_FLASH2 = False
try:
import xformers.ops as xops
SUPPORT_XFORMERS = True
except ImportError:
pass
try:
from flash_attn import flash_attn_func
SUPPORT_FLASH2 = True
except ImportError:
pass
SUPPORT_FLASH = SUPPORT_XFORMERS or SUPPORT_FLASH2
def llama_flash_attention(
self: LlamaAttention,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# q, k, v is [B, H, S, K] and xformers need [B, S, H, K]. returns [B, S, H, K]
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if SUPPORT_FLASH2:
attn_output = flash_attn_func(query_states, key_states, value_states, causal=True)
else:
attn_output = xops.memory_efficient_attention(
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def replace_xformers(model: nn.Module):
for module in model.modules():
if isinstance(module, LlamaAttention):
module.forward = MethodType(llama_flash_attention, module)