ColossalAI/examples/images/diffusion/scripts/txt2img.py

304 lines
8.8 KiB
Python
Raw Normal View History

import argparse
import os
from itertools import islice
2022-11-08 08:14:45 +00:00
import cv2
import numpy as np
import torch
from einops import rearrange
2022-11-08 08:14:45 +00:00
from omegaconf import OmegaConf
from PIL import Image
from torchvision.utils import make_grid
from tqdm import tqdm, trange
2022-12-12 09:35:23 +00:00
try:
from lightning.pytorch import seed_everything
except:
from pytorch_lightning import seed_everything
2022-12-12 09:35:23 +00:00
from contextlib import nullcontext
2022-11-08 08:14:45 +00:00
from imwatermark import WatermarkEncoder
2022-11-08 08:14:45 +00:00
from ldm.models.diffusion.ddim import DDIMSampler
2022-12-12 09:35:23 +00:00
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.util import instantiate_from_config
from torch import autocast
from utils import replace_module
2022-11-08 08:14:45 +00:00
2022-12-12 09:35:23 +00:00
torch.set_grad_enabled(False)
2022-11-08 08:14:45 +00:00
2022-11-08 08:14:45 +00:00
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
2022-11-08 08:14:45 +00:00
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.eval()
return model
2022-12-12 09:35:23 +00:00
def parse_args():
2022-11-08 08:14:45 +00:00
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
2022-12-12 09:35:23 +00:00
default="a professional photograph of an astronaut riding a triceratops",
help="the prompt to render",
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
"--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples"
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
2022-12-12 09:35:23 +00:00
"--steps",
2022-11-08 08:14:45 +00:00
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action="store_true",
2022-11-08 08:14:45 +00:00
help="use plms sampling",
)
parser.add_argument(
2022-12-12 09:35:23 +00:00
"--dpm",
action="store_true",
2022-12-12 09:35:23 +00:00
help="use DPM (2) sampler",
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
"--fixed_code",
action="store_true",
2022-12-12 09:35:23 +00:00
help="if enabled, uses the same starting code across all samples ",
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
2022-12-12 09:35:23 +00:00
default=3,
2022-11-08 08:14:45 +00:00
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
2022-12-12 09:35:23 +00:00
help="downsampling factor, most often 8 or 16",
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
"--n_samples",
type=int,
default=3,
2022-12-12 09:35:23 +00:00
help="how many samples to produce for each given prompt. A.k.a batch size",
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
2022-12-12 09:35:23 +00:00
default=9.0,
2022-11-08 08:14:45 +00:00
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
2022-12-12 09:35:23 +00:00
help="if specified, load prompts from this file, separated by newlines",
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
"--config",
type=str,
2022-12-12 09:35:23 +00:00
default="configs/stable-diffusion/v2-inference.yaml",
2022-11-08 08:14:45 +00:00
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast"
2022-11-08 08:14:45 +00:00
)
2022-12-12 09:35:23 +00:00
parser.add_argument(
"--repeat",
type=int,
default=1,
help="repeat each prompt in file this often",
)
parser.add_argument(
"--use_int8",
type=bool,
default=False,
help="use int8 for inference",
)
2022-11-08 08:14:45 +00:00
opt = parser.parse_args()
2022-12-12 09:35:23 +00:00
return opt
2022-11-08 08:14:45 +00:00
2022-12-12 09:35:23 +00:00
def put_watermark(img, wm_encoder=None):
if wm_encoder is not None:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
img = wm_encoder.encode(img, "dwtDct")
2022-12-12 09:35:23 +00:00
img = Image.fromarray(img[:, :, ::-1])
return img
def main(opt):
2022-11-08 08:14:45 +00:00
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
2022-11-08 08:14:45 +00:00
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
# quantize model
if opt.use_int8:
model = replace_module(model)
# # to compute the model size
# getModelSize(model)
2022-11-08 08:14:45 +00:00
if opt.plms:
sampler = PLMSSampler(model)
2022-12-12 09:35:23 +00:00
elif opt.dpm:
sampler = DPMSolverSampler(model)
2022-11-08 08:14:45 +00:00
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
2022-12-12 09:35:23 +00:00
wm = "SDV2"
2022-11-08 08:14:45 +00:00
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark("bytes", wm.encode("utf-8"))
2022-11-08 08:14:45 +00:00
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
2022-12-12 09:35:23 +00:00
data = [p for p in data for i in range(opt.repeat)]
2022-11-08 08:14:45 +00:00
data = list(chunk(data, batch_size))
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
2022-12-12 09:35:23 +00:00
sample_count = 0
2022-11-08 08:14:45 +00:00
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
2022-12-12 09:35:23 +00:00
precision_scope = autocast if opt.precision == "autocast" else nullcontext
with torch.no_grad(), precision_scope("cuda"), model.ema_scope():
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples, _ = sampler.sample(
S=opt.steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code,
)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
for x_sample in x_samples:
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c")
img = Image.fromarray(x_sample.astype(np.uint8))
img = put_watermark(img, wm_encoder)
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
sample_count += 1
all_samples.append(x_samples)
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, "n b c h w -> (n b) c h w")
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
grid = Image.fromarray(grid.astype(np.uint8))
grid = put_watermark(grid, wm_encoder)
grid.save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
grid_count += 1
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.")
2022-11-08 08:14:45 +00:00
if __name__ == "__main__":
2022-12-12 09:35:23 +00:00
opt = parse_args()
main(opt)
# # to compute the mem allocated
# print(torch.cuda.max_memory_allocated() / 1024 / 1024)