ColossalAI/examples/images/diffusion/scripts/img2img.py

291 lines
9.0 KiB
Python
Raw Normal View History

2022-11-08 08:14:45 +00:00
"""make variations of input image"""
import argparse
import os
from contextlib import nullcontext
from itertools import islice
import numpy as np
2022-11-08 08:14:45 +00:00
import PIL
import torch
from einops import rearrange, repeat
2022-11-08 08:14:45 +00:00
from omegaconf import OmegaConf
from PIL import Image
from torch import autocast
from torchvision.utils import make_grid
from tqdm import tqdm, trange
2022-12-12 09:35:23 +00:00
try:
from lightning.pytorch import seed_everything
except:
from pytorch_lightning import seed_everything
2022-11-08 08:14:45 +00:00
from imwatermark import WatermarkEncoder
2022-11-08 08:14:45 +00:00
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config
from scripts.txt2img import put_watermark
from utils import replace_module
2022-11-08 08:14:45 +00:00
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
2022-11-08 08:14:45 +00:00
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.eval()
return model
def load_img(path):
image = Image.open(path).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from {path}")
2022-12-12 09:35:23 +00:00
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
2022-11-08 08:14:45 +00:00
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
2022-11-08 08:14:45 +00:00
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render",
2022-11-08 08:14:45 +00:00
)
parser.add_argument("--init-img", type=str, nargs="?", help="path to the input image")
2022-11-08 08:14:45 +00:00
parser.add_argument(
"--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/img2img-samples"
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--fixed_code",
action="store_true",
2022-11-08 08:14:45 +00:00
help="if enabled, uses the same starting code across all samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
2022-12-12 09:35:23 +00:00
2022-11-08 08:14:45 +00:00
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor, most often 8 or 16",
)
2022-12-12 09:35:23 +00:00
2022-11-08 08:14:45 +00:00
parser.add_argument(
"--n_samples",
type=int,
default=2,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
2022-12-12 09:35:23 +00:00
2022-11-08 08:14:45 +00:00
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
2022-12-12 09:35:23 +00:00
2022-11-08 08:14:45 +00:00
parser.add_argument(
"--scale",
type=float,
2022-12-12 09:35:23 +00:00
default=9.0,
2022-11-08 08:14:45 +00:00
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--strength",
type=float,
2022-12-12 09:35:23 +00:00
default=0.8,
2022-11-08 08:14:45 +00:00
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
)
2022-12-12 09:35:23 +00:00
2022-11-08 08:14:45 +00:00
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
2022-12-12 09:35:23 +00:00
default="configs/stable-diffusion/v2-inference.yaml",
2022-11-08 08:14:45 +00:00
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast"
2022-11-08 08:14:45 +00:00
)
parser.add_argument(
"--use_int8",
type=bool,
default=False,
help="use int8 for inference",
)
2022-11-08 08:14:45 +00:00
opt = parser.parse_args()
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
# quantize model
if opt.use_int8:
model = replace_module(model)
# # to compute the model size
# getModelSize(model)
2022-12-12 09:35:23 +00:00
sampler = DDIMSampler(model)
2022-11-08 08:14:45 +00:00
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
2022-12-12 09:35:23 +00:00
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "SDV2"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark("bytes", wm.encode("utf-8"))
2022-12-12 09:35:23 +00:00
2022-11-08 08:14:45 +00:00
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
assert os.path.isfile(opt.init_img)
init_image = load_img(opt.init_img).to(device)
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
2022-11-08 08:14:45 +00:00
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
assert 0.0 <= opt.strength <= 1.0, "can only work with strength in [0.0, 1.0]"
2022-11-08 08:14:45 +00:00
t_enc = int(opt.strength * opt.ddim_steps)
print(f"target t_enc is {t_enc} steps")
precision_scope = autocast if opt.precision == "autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
# encode (scaled latent)
2022-12-12 09:35:23 +00:00
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(device))
2022-11-08 08:14:45 +00:00
# decode it
samples = sampler.decode(
z_enc,
c,
t_enc,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
)
2022-11-08 08:14:45 +00:00
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
2022-12-12 09:35:23 +00:00
for x_sample in x_samples:
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c")
2022-12-12 09:35:23 +00:00
img = Image.fromarray(x_sample.astype(np.uint8))
img = put_watermark(img, wm_encoder)
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
2022-11-08 08:14:45 +00:00
all_samples.append(x_samples)
2022-12-12 09:35:23 +00:00
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, "n b c h w -> (n b) c h w")
2022-12-12 09:35:23 +00:00
grid = make_grid(grid, nrow=n_rows)
2022-11-08 08:14:45 +00:00
2022-12-12 09:35:23 +00:00
# to image
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
2022-12-12 09:35:23 +00:00
grid = Image.fromarray(grid.astype(np.uint8))
grid = put_watermark(grid, wm_encoder)
grid.save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
2022-12-12 09:35:23 +00:00
grid_count += 1
2022-11-08 08:14:45 +00:00
2022-12-12 09:35:23 +00:00
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
2022-11-08 08:14:45 +00:00
if __name__ == "__main__":
main()
# # to compute the mem allocated
# print(torch.cuda.max_memory_allocated() / 1024 / 1024)