ColossalAI/colossalai/tensor/comm_spec.py

526 lines
22 KiB
Python
Raw Normal View History

import operator
2022-09-29 03:20:59 +00:00
from enum import Enum
from functools import reduce
import torch
import torch.distributed as dist
2022-09-29 03:20:59 +00:00
from torch.distributed import ReduceOp
__all__ = [
'CollectiveCommPattern',
'CommSpec',
]
def _all_gather(tensor, comm_spec):
'''
Implement all gather operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
tensor_list = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
for _ in range(comm_spec.device_mesh.mesh_shape[comm_spec.logical_process_axis])
]
# without this contiguous operation, the all gather may get some unexpected results.
tensor = tensor.contiguous()
dist.all_gather(tensor_list, tensor, group=process_group)
2022-09-29 03:20:59 +00:00
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
return output
def _split(tensor, comm_spec):
'''
Implement shard operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, _ in process_groups_list:
if dist.get_rank() in rank_list:
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
start = length * rank_list.index(dist.get_rank())
output = torch.narrow(tensor, dim, start, length).contiguous()
2022-09-29 03:20:59 +00:00
return output
def _all_to_all(tensor, comm_spec):
'''
Implement all to all operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
new_shape = list(tensor.shape)
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // len(rank_list)
new_shape = torch.Size(new_shape)
output_tensor_list = [
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
input_tensor_list = [
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
return output
def _all_reduce(tensor, comm_spec, async_op=False):
2022-09-29 03:20:59 +00:00
'''
Implement all reduce operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
if not tensor.is_contiguous():
tensor = tensor.contiguous()
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op)
2022-09-29 03:20:59 +00:00
return tensor
def _mix_gather(tensor, comm_spec):
'''
Implement mix gather operation on device mesh based on information provided by comm_spec.
Mix gather is the all-gather operation on all devices in the device_mesh(FlattenDeviceMesh) of the comm_spec. It is
different from _all_gather because _mix_gather does all-gather in two dimensions of device mesh, while _all_gather
only does all-gather in one dimension.
Assume index of f and b target pairs are 'f' and 'b'
ShardingSpec => gather_dim, logical_process_axes
S0S1 => [b, f], (1, 0)
S1S0 => [b, f], (0, 1)
S01R => [f], (1, 1)
RS01 => [b], (1, 1)
Example:
mesh_shape = (2,4)
# [[0, 1, 2, 3],
# [4, 5, 6, 7]]
# return {0: [0, 4, 1, 5, 2, 6, 3, 7], 1: [0, 1, 2, 3, 4, 5, 6, 7]}
S0S1:
leading_group_dim = 1
process_group = "[0, 1, 2, 3, 4, 5, 6, 7]"
tensor_list = [(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)] # [(slice_id_f, slice_id_b),...]
mesh_shape = (2,4)
cat_slice = [4,2]
tmp_tensor_list = [(...,shape[f],shape[b]*4,...),(...,shape[f],shape[b]*4,...)]
tmp_tensor_list[0] = torch.cat(((0,0),(0,1),(0,2),(0,3)), dim=b)
tmp_tensor_list[1] = torch.cat(((1,0),(1,1),(1,2),(1,3)), dim=b)
output = torch.cat((tmp_tensor_list[0],tmp_tensor_list[1]), dim=a)
S1S0:
leading_group_dim = 0
process_group = "[0, 4, 1, 5, 2, 6, 3, 7]"
tensor_list = [(0,0),(0,1),(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)]
mesh_shape = (2,4)
cat_slice = [2,4]
tmp_tensor_list = [(...,shape[f],shape[b]*2,...),(...,shape[f],shape[b]*2,...),(...,shape[f],shape[b]*2,...),(...,shape[f],shape[b]*2,...)]
tmp_tensor_list[0] = torch.cat(((0,0),(0,1)), dim=b)
tmp_tensor_list[1] = torch.cat(((1,0),(1,1)), dim=b)
tmp_tensor_list[2] = torch.cat(((2,0),(2,1)), dim=b)
tmp_tensor_list[3] = torch.cat(((3,0),(3,1)), dim=b)
S10R:
leading_group_dim = 0
process_group = "[0, 4, 1, 5, 2, 6, 3, 7]"
tensor_list = [(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0)]
S01R:
leading_group_dim = 1
process_group = "[0, 1, 2, 3, 4, 5, 6, 7]"
tensor_list = [(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0)]
'''
total_slices = comm_spec.device_mesh.mesh_shape[0]
tensor_list = [torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(total_slices)]
leading_group_dim = comm_spec.logical_process_axes[0]
assert len(comm_spec.device_mesh.process_groups_dict) == 1
_, process_group = comm_spec.device_mesh.process_groups_dict[0][0]
process_number_list = comm_spec.device_meshes.process_number_dict[leading_group_dim]
# Global all_gather
dist.all_gather(tensor_list, tensor, group=process_group)
# This is very ugly. I'm figuring out more elegant methods
tensor_list_sorted = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(total_slices)
]
for i in range(total_slices):
tensor_list_sorted[i] = tensor_list[process_number_list[i]]
tensor_list = tensor_list_sorted
if comm_spec.logical_process_axes[0] == comm_spec.logical_process_axes[1]:
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim[0]).contiguous()
else:
mesh_shape = comm_spec.device_meshes.mesh_shape
cat_slice = [mesh_shape[comm_spec.logical_process_axes[0]], mesh_shape[comm_spec.logical_process_axes[1]]]
tmp_tensor_shape = list(tensor.shape)
tmp_tensor_shape[comm_spec.gather_dim[0]] *= cat_slice[0]
tmp_tensor_shape = torch.Size(tmp_tensor_shape)
tmp_tensor_list = [
torch.zeros(tmp_tensor_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(cat_slice[1])
]
for i in range(cat_slice[1]):
tmp_tensor_list[i] = torch.cat(tuple(tensor_list[i * cat_slice[0]:(i + 1) * cat_slice[0]]),
comm_spec.gather_dim[0]).contiguous()
output = torch.cat(tuple(tmp_tensor_list), comm_spec.gather_dim[1]).contiguous()
return output
def _mix_split(tensor, comm_spec):
'''
Implement mix split operation. Mix split is only called for the backward of mix gather (Use ctx to keep consistent)
Mix split shards the tensor on device mesh based on information provided by comm_spec. It is different from split
because _mix_split shards the tensor in two dimensions of device mesh, while _split only shards in one dimension.
Assume index of f and b target pairs are 'f' and 'b'
S0S1 => [b, f], (1, 0)
S1S0 => [b, f], (0, 1)
S01R => [f], (0, 0)
RS01 => [b], (0, 0)
Example:
mesh_shape = (2,4)
# [[0, 1, 2, 3],
# [4, 5, 6, 7]]
# return {0: [0, 4, 1, 5, 2, 6, 3, 7], 1: [0, 1, 2, 3, 4, 5, 6, 7]}
'''
mesh_shape = comm_spec.device_meshes.mesh_shape
dim = comm_spec.gather_dim
total_slices = comm_spec.device_mesh.mesh_shape[0]
# Get global rank
rank = dist.get_rank()
leading_group_dim = comm_spec.logical_process_axes[0]
process_number_list = comm_spec.device_meshes.process_number_dict[leading_group_dim]
rank = process_number_list.index(rank)
if comm_spec.logical_process_axes[0] == comm_spec.logical_process_axes[1]:
length = tensor.shape[dim[0]] // total_slices
start = length * rank
output = torch.narrow(tensor, dim[0], start, length).contiguous()
else:
tensor_shape = [tensor.shape[dim[0]], tensor.shape[dim[1]]]
rank_slice = [mesh_shape[comm_spec.logical_process_axes[0]], mesh_shape[comm_spec.logical_process_axes[1]]]
length = [tensor_shape[0] // rank_slice[0], tensor_shape[1] // rank_slice[1]]
start = [(rank % rank_slice[0]) * length[0], (rank // rank_slice[0]) * length[1]]
tmp_output = torch.narrow(tensor, dim[0], start[0], length[0]).contiguous()
output = torch.narrow(tmp_output, dim[1], start[1], length[1]).contiguous()
return output
2022-09-29 03:20:59 +00:00
class _ReduceGrad(torch.autograd.Function):
"""
A customized communication operation which forward is an identity operation,
backward is all_reduce operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return input_
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return input_
@staticmethod
def backward(ctx, grad_output):
return _all_reduce(grad_output, ctx.comm_spec), None
class _ReduceInput(torch.autograd.Function):
"""
A customized communication operation which forward is all_reduce operation,
backward is an identity operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_reduce(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
return _all_reduce(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
A customized communication operation which forward is split operation,
backward is an all gather operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _split(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _split(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _all_gather(grad_output, ctx.comm_spec), None
class _GatherForwardSplitBackward(torch.autograd.Function):
"""
A customized communication operation which forward is an all gather operation,
backward is split operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_gather(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _all_gather(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.comm_spec), None
class _AllToAll(torch.autograd.Function):
"""
A customized communication operation which forward is an all to all operation,
backward is an all to all operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_to_all(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
output = _all_to_all(input_, comm_spec)
comm_spec_for_backward = CommSpec(comm_pattern=comm_spec.comm_pattern,
sharding_spec=comm_spec.sharding_spec,
gather_dim=comm_spec.shard_dim,
shard_dim=comm_spec.gather_dim,
logical_process_axis=comm_spec.logical_process_axis)
ctx.comm_spec = comm_spec_for_backward
return output
@staticmethod
def backward(ctx, grad_outputs):
return _all_to_all(grad_outputs, ctx.comm_spec), None
class _MixGatherForwardMixSplitBackward(torch.autograd.Function):
@staticmethod
def symbolic(graph, input_):
return _mix_gather(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _mix_gather(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _mix_split(grad_output, ctx.comm_spec), None
2022-09-29 03:20:59 +00:00
def reduce_grad(input_, comm_spec):
return _ReduceGrad.apply(input_, comm_spec)
def reduce_input(input_, comm_spec):
return _ReduceInput.apply(input_, comm_spec)
def split_forward_gather_backward(input_, comm_spec):
return _SplitForwardGatherBackward.apply(input_, comm_spec)
def gather_forward_split_backward(input_, comm_spec):
return _GatherForwardSplitBackward.apply(input_, comm_spec)
def all_to_all(input_, comm_spec):
return _AllToAll.apply(input_, comm_spec)
def mixgather_forward_split_backward(input_, comm_spec):
return _MixGatherForwardMixSplitBackward.apply(input_, comm_spec)
2022-09-29 03:20:59 +00:00
class CollectiveCommPattern(Enum):
GATHER_FWD_SPLIT_BWD = 'gather_fwd_split_bwd'
ALL2ALL_FWD_ALL2ALL_BWD = 'all2all_fwd_all2all_bwd'
SPLIT_FWD_GATHER_BWD = 'split_fwd_gather_bwd'
ALLREDUCE_FWD_IDENTITY_BWD = 'all_reduce_fwd_identity_bwd'
IDENTITY_FWD_ALLREDUCE_BWD = 'identity_fwd_all_reduce_bwd'
MIXGATHER_FWD_SPLIT_BWD = "mixgather_fwd_split_bwd"
2022-09-29 03:20:59 +00:00
class CommSpec:
'''
Communication spec is used to record the communication action. It has two main functions:
1. Compute the communication cost which will be used in auto parallel solver.
2. Convert the communication spec to real action which will be used in runtime.
It contains comm_pattern to determine the
communication method, sharding_spec to determine the communication size, gather_dim and shard_dim
2022-09-29 03:20:59 +00:00
to determine the buffer shape, and logical_process_axis
Argument:
comm_pattern(CollectiveCommPattern): decribe the communication method used in this spec.
sharding_spec(ShardingSpec): This is sharding spec of the tensor which will join the communication action.
gather_dim(int, Optional): The gather_dim of the tensor will be gathered.
shard_dim(int, Optional): The shard_dim of the tensor will be sharded.
logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action.
'''
def __init__(self,
comm_pattern,
sharding_spec,
gather_dim=None,
shard_dim=None,
logical_process_axis=None,
forward_only=False,
mix_gather=False):
2022-09-29 03:20:59 +00:00
self.comm_pattern = comm_pattern
self.sharding_spec = sharding_spec
self.gather_dim = gather_dim
self.shard_dim = shard_dim
self.logical_process_axis = logical_process_axis
self.forward_only = forward_only
if isinstance(self.logical_process_axis, list):
if not mix_gather:
self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh
self.logical_process_axis = 0
else:
self.device_meshes = self.sharding_spec.device_mesh.flatten_device_meshes
self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh
# Create a new member `logical_process_axes` to distinguish from original flatten
self.logical_process_axes = logical_process_axis
2022-09-29 03:20:59 +00:00
else:
self.device_mesh = self.sharding_spec.device_mesh
def __repr__(self):
res_list = ["CommSpec:("]
if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
res_list.append(f"comm_pattern:GATHER_FWD_SPLIT_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
res_list.append(f"comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"shard_dim:{self.shard_dim}, ")
res_list.append(f"logical_process_axis: {self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
res_list.append(f"comm_pattern:SPLIT_FWD_GATHER_BWD, ")
res_list.append(f"shard_dim:{self.shard_dim}, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD:
res_list.append(f"comm_pattern:ALLREDUCE_FWD_IDENTITY_BWD, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
res_list.append(f"comm_pattern:IDENTITY_FWD_ALLREDUCE_BWD, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD:
res_list.append(f"comm_pattern:MIXGATHER_FWD_SPLIT_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"logical_process_asex:{self.logical_process_axes})")
2022-09-29 03:20:59 +00:00
return ''.join(res_list)
def get_comm_cost(self):
'''
For all_gather, all2all, and all_reduce operation, the formula provided in DeviceMesh with alpha-beta model is used to
compute the communication cost.
For shard operation, it is an on-chip operation, so the communication cost is zero.
2022-09-29 03:20:59 +00:00
'''
comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1)
cost_dict = {}
if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
forward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
# give a tiny cost to shard
backward_communication_cost = 10
if self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
forward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
# grad should have same shape as input tensor
# all to all operation has same logical process axis as forward.
backward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD:
forward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
backward_communication_cost = 0
if self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
forward_communication_cost = 0
backward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
# give a tiny cost to shard
forward_communication_cost = 10
backward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD:
# no need for axis because all devices are used in mix_gather
forward_communication_cost = self.device_mesh.mix_gather_cost(comm_size)
backward_communication_cost = 10
2022-09-29 03:20:59 +00:00
if self.forward_only:
cost_dict["forward"] = forward_communication_cost
cost_dict["backward"] = 0
cost_dict["total"] = cost_dict["forward"] + cost_dict["backward"]
else:
cost_dict["forward"] = forward_communication_cost
cost_dict["backward"] = backward_communication_cost
cost_dict["total"] = cost_dict["forward"] + cost_dict["backward"]
return cost_dict
def covert_spec_to_action(self, tensor):
'''
Convert CommSpec into runtime action, implement real collection communication to target tensor.
The collection communication action is directed by the CommSpec.
Argument:
tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks.
'''
if self.comm_pattern in pattern_to_func_dict:
tensor = pattern_to_func_dict[self.comm_pattern](tensor, self)
2022-09-29 03:20:59 +00:00
else:
tensor = tensor
return tensor
2022-09-29 03:20:59 +00:00
pattern_to_func_dict = {
CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: gather_forward_split_backward,
CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: all_to_all,
CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: split_forward_gather_backward,
CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: reduce_input,
CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: reduce_grad,
CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD: mixgather_forward_split_backward,
2022-09-29 03:20:59 +00:00
}