|
|
|
import copy
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from torch import nn
|
|
|
|
from torch.testing import assert_close
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
|
|
from colossalai.logging import disable_existing_loggers
|
|
|
|
from colossalai.nn.optimizer.adafactor import Adafactor
|
|
|
|
from colossalai.nn.optimizer.distributed_adafactor import DistributedAdaFactor
|
|
|
|
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
|
|
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
|
|
from colossalai.tensor.d_tensor import (
|
|
|
|
distribute_tensor,
|
|
|
|
get_device_mesh,
|
|
|
|
get_layout,
|
|
|
|
get_sharding_spec,
|
|
|
|
is_distributed_tensor,
|
|
|
|
shard_colwise,
|
|
|
|
shard_rowwise,
|
|
|
|
)
|
|
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
|
|
from colossalai.tensor.d_tensor.sharding_spec import DimSpec
|
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
from colossalai.utils import set_seed
|
|
|
|
from colossalai.zero import LowLevelZeroOptimizer
|
|
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
from tests.test_optimizer._utils import check_dist_optim_state, check_dist_param, check_optim_states
|
|
|
|
from tests.test_shardformer.test_model._utils import (
|
|
|
|
build_model_from_hybrid_plugin,
|
|
|
|
build_model_from_low_level_zero_plugin,
|
|
|
|
check_weight,
|
|
|
|
run_forward_backward_with_hybrid_plugin,
|
|
|
|
run_forward_backward_with_low_level_zero_plugin,
|
|
|
|
unwrap_model,
|
|
|
|
)
|
|
|
|
|
|
|
|
HEIGHT = 4
|
|
|
|
WIDTH = 4
|
|
|
|
_TP_SPEC = DimSpec([0])
|
|
|
|
|
|
|
|
|
|
|
|
def correctness_verify(tensor1: torch.Tensor, tensor2: torch.Tensor, dtype: torch.dtype = torch.float32):
|
|
|
|
rtol = None
|
|
|
|
atol = None
|
|
|
|
if dtype is torch.float32:
|
|
|
|
rtol = 5e-04
|
|
|
|
atol = 5e-04
|
|
|
|
elif dtype is torch.float16:
|
|
|
|
rtol = 5e-2
|
|
|
|
atol = 5e-4
|
|
|
|
elif dtype is torch.bfloat16:
|
|
|
|
rtol = 4e-3
|
|
|
|
atol = 4e-3
|
|
|
|
|
|
|
|
assert_close(tensor1, tensor2, rtol=rtol, atol=atol)
|
|
|
|
|
|
|
|
|
|
|
|
# setup param groups; (For zero test optim)
|
|
|
|
def setup_param_groups_zero(model: nn.Module) -> list:
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
|
|
optimizer_grouped_parameters = [
|
|
|
|
{
|
|
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
|
|
"weight_decay": 0.1,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
|
|
"weight_decay": 0.0,
|
|
|
|
},
|
|
|
|
]
|
|
|
|
return optimizer_grouped_parameters
|
|
|
|
|
|
|
|
|
|
|
|
# setup param groups; (For base optim)
|
|
|
|
def setup_param_groups(model: nn.Module) -> list:
|
|
|
|
optimizer_grouped_parameters = [p for n, p in model.named_parameters()]
|
|
|
|
return optimizer_grouped_parameters
|
|
|
|
|
|
|
|
|
|
|
|
# setup flatten param groups, sharding spec and shape; (For dist optim)
|
|
|
|
def setup_flatten_param_groups_sharding_spec_shape(model: nn.Module) -> dict:
|
|
|
|
flatten_optimizer_grouped_parameters = []
|
|
|
|
sharding_spec = {} # {id(flatten param): get_layout(p).global_shape}
|
|
|
|
param_shape = {} # {id(flatten param): get_sharding_spec(p)}
|
|
|
|
for n, p in model.named_parameters():
|
|
|
|
# flatten_p = copy.deepcopy(p).flatten()
|
|
|
|
flatten_p = nn.Parameter(p.clone().flatten().requires_grad_(True))
|
|
|
|
flatten_optimizer_grouped_parameters.append(flatten_p)
|
|
|
|
if is_distributed_tensor(p):
|
|
|
|
sharding_spec[id(flatten_p)] = get_sharding_spec(p)
|
|
|
|
param_shape[id(flatten_p)] = get_layout(p).global_shape
|
|
|
|
else:
|
|
|
|
sharding_spec[id(flatten_p)] = None
|
|
|
|
param_shape[id(flatten_p)] = p.shape
|
|
|
|
return flatten_optimizer_grouped_parameters, sharding_spec, param_shape
|
|
|
|
|
|
|
|
|
|
|
|
def set_dist_grad(
|
|
|
|
dist_module: nn.Module, torch_model: nn.Module, g_dtype: torch.dtype, group: dist.ProcessGroup
|
|
|
|
) -> None:
|
|
|
|
"""
|
|
|
|
Set split grads for Tensor Parallel or ZeRO DP.
|
|
|
|
We do not need a separate treatment for ZeRO,
|
|
|
|
as the wrapper takes care of reduce-scattering grads.
|
|
|
|
"""
|
|
|
|
rank = dist.get_rank(group)
|
|
|
|
world_size = dist.get_world_size(group)
|
|
|
|
|
|
|
|
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
|
|
|
if torch_p.grad is None:
|
|
|
|
torch_p.grad = torch.zeros_like(torch_p)
|
|
|
|
|
|
|
|
is_distributed = hasattr(p, "dist_layout")
|
|
|
|
if is_distributed:
|
|
|
|
sharding = p.dist_layout.sharding_spec.sharding_sequence
|
|
|
|
split_dim = sharding.index(_TP_SPEC)
|
|
|
|
shape = torch_p.split(world_size, dim=split_dim)[rank].shape
|
|
|
|
|
|
|
|
indices = torch.arange(shape[split_dim] * rank, shape[split_dim] * (rank + 1))
|
|
|
|
# Generate grads only for the correctly split chunk
|
|
|
|
torch_p.grad.index_add_(split_dim, indices, torch.randn(shape, device=torch_p.device, dtype=g_dtype))
|
|
|
|
|
|
|
|
else:
|
|
|
|
shape = torch_p.shape
|
|
|
|
torch_p.grad += torch.randn(shape, device=torch_p.device, dtype=g_dtype)
|
|
|
|
|
|
|
|
# avoid inconsistent grad and param dtype error
|
|
|
|
orig_p = p.data
|
|
|
|
p.data = torch_p.grad.clone().to(g_dtype)
|
|
|
|
p.grad = p.data
|
|
|
|
p.data = orig_p
|
|
|
|
|
|
|
|
|
|
|
|
def set_master_param_to_shard_param(master_param_list) -> dict:
|
|
|
|
master_param_to_shard_param = {id(p): p for p in master_param_list}
|
|
|
|
return master_param_to_shard_param
|
|
|
|
|
|
|
|
|
|
|
|
class MlpModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(MlpModel, self).__init__()
|
|
|
|
self.linear1 = nn.Linear(HEIGHT, WIDTH)
|
|
|
|
self.linear2 = nn.Linear(WIDTH, HEIGHT)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.linear1(x)
|
|
|
|
x = self.linear2(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class TPModel(nn.Module):
|
|
|
|
def __init__(self, linear1, linear2, tp_group=None):
|
|
|
|
super().__init__()
|
|
|
|
self.linear1 = Linear1D_Col.from_native_module(
|
|
|
|
linear1, process_group=tp_group, gather_output=False, overlap=True
|
|
|
|
)
|
|
|
|
self.linear2 = Linear1D_Row.from_native_module(linear2, process_group=tp_group, parallel_input=True)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.linear1(x)
|
|
|
|
x = self.linear2(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize("dtype", [torch.float32, torch.float16, torch.bfloat16]) # torch.float32, torch.float16, torch.bfloat16
|
|
|
|
@parameterize("tp_zero_size", [(4, 1)])
|
|
|
|
def exam_dist_adafactor_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
|
|
|
tp_size, zero_size = tp_zero_size
|
|
|
|
local_rank = dist.get_rank()
|
|
|
|
use_zero = True if zero_size > 1 else False
|
|
|
|
|
|
|
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
|
|
|
tp_group, dp_group = proc_mesh.get_group_along_axis(0), proc_mesh.get_group_along_axis(1)
|
|
|
|
|
|
|
|
torch.set_default_dtype(dtype)
|
|
|
|
set_seed(42)
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Base Case
|
|
|
|
# ==============================
|
|
|
|
H, W = HEIGHT, WIDTH
|
|
|
|
model_col = nn.Linear(H, W).to(local_rank) # Col parallel weight
|
|
|
|
weight, bias = model_col.weight, model_col.bias
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Col Parallel
|
|
|
|
# ==============================
|
|
|
|
weight_col_shard = shard_colwise(weight.clone(), tp_group)
|
|
|
|
weight_col_shard_shard_spec = get_sharding_spec(weight_col_shard) # Shard spec
|
|
|
|
weight_col_shard_flatten = nn.Parameter(weight_col_shard.clone().flatten().requires_grad_(True))
|
|
|
|
bias_col_flatten = nn.Parameter(bias.clone().flatten().requires_grad_(True))
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Row Parallel
|
|
|
|
# ==============================
|
|
|
|
weight_row_shard = shard_rowwise(weight.clone(), tp_group)
|
|
|
|
weight_row_shard_shard_spec = get_sharding_spec(weight_row_shard) # Shard spec
|
|
|
|
weight_row_shard_flatten = nn.Parameter(
|
|
|
|
weight_row_shard.clone().flatten().requires_grad_(True)
|
|
|
|
) # flatten input(not dtensor) to optimizer
|
|
|
|
bias_row_flatten = nn.Parameter(bias.clone().flatten().requires_grad_(True))
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Init Optimizer
|
|
|
|
# ==============================
|
|
|
|
|
|
|
|
# base
|
|
|
|
optimizer_base = Adafactor([weight, bias])
|
|
|
|
cp_dist_optim = DistributedAdaFactor([weight_col_shard_flatten, bias_col_flatten])
|
|
|
|
rp_dist_optim = DistributedAdaFactor([weight_row_shard_flatten, bias_row_flatten])
|
|
|
|
|
|
|
|
shard_to_param_cp = set_master_param_to_shard_param([weight_col_shard_flatten, bias_col_flatten])
|
|
|
|
cp_dist_optim.setup_distributed(
|
|
|
|
tp_group=tp_group,
|
|
|
|
dp_group=dp_group,
|
|
|
|
shard_to_working_param=shard_to_param_cp,
|
|
|
|
use_zero=use_zero,
|
|
|
|
)
|
|
|
|
|
|
|
|
shard_to_param_rp = set_master_param_to_shard_param([weight_row_shard_flatten, bias_row_flatten])
|
|
|
|
rp_dist_optim.setup_distributed(
|
|
|
|
tp_group=tp_group,
|
|
|
|
dp_group=dp_group,
|
|
|
|
shard_to_working_param=shard_to_param_rp,
|
|
|
|
use_zero=use_zero,
|
|
|
|
)
|
|
|
|
|
|
|
|
N_STEPS = 1
|
|
|
|
for _ in range(N_STEPS):
|
|
|
|
# base step
|
|
|
|
optimizer_base.zero_grad()
|
|
|
|
weight.grad = torch.rand_like(weight)
|
|
|
|
bias.grad = torch.rand_like(bias)
|
|
|
|
optimizer_base.step()
|
|
|
|
|
|
|
|
# col parallel step
|
|
|
|
cp_dist_optim.zero_grad()
|
|
|
|
weight_col_shard_flatten.grad = (
|
|
|
|
distribute_tensor(weight.grad, get_device_mesh(weight_col_shard), weight_col_shard_shard_spec)
|
|
|
|
.clone()
|
|
|
|
.flatten()
|
|
|
|
)
|
|
|
|
bias_col_flatten.grad = bias.grad.clone().flatten()
|
|
|
|
cp_dist_optim.step()
|
|
|
|
|
|
|
|
# row parallel step
|
|
|
|
rp_dist_optim.zero_grad()
|
|
|
|
weight_row_shard_flatten.grad = (
|
|
|
|
distribute_tensor(weight.grad, get_device_mesh(weight_row_shard), weight_row_shard_shard_spec)
|
|
|
|
.clone()
|
|
|
|
.flatten()
|
|
|
|
)
|
|
|
|
bias_row_flatten.grad = bias.grad.clone().flatten()
|
|
|
|
rp_dist_optim.step()
|
|
|
|
|
|
|
|
weight_row_chunk = weight.t().reshape(-1, W).chunk(tp_size, dim=-1)[dist.get_rank(tp_group)].flatten()
|
|
|
|
weight_col_chunk = weight.reshape(-1, H).chunk(tp_size, dim=-1)[dist.get_rank(tp_group)].flatten()
|
|
|
|
# verify
|
|
|
|
correctness_verify(weight_col_chunk, weight_col_shard_flatten, dtype)
|
|
|
|
correctness_verify(weight_row_chunk, weight_row_shard_flatten, dtype)
|
|
|
|
|
|
|
|
print(f"Base Test Passed")
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize("dtype", [torch.float16]) # torch.float32, torch.float16, torch.bfloat16
|
|
|
|
@parameterize("tp_zero_size", [(1, 4)]) # (2, 2), (4, 1), (1, 4)
|
|
|
|
def exam_dist_adafactor_zero(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
|
|
|
tp_size, zero_size = tp_zero_size
|
|
|
|
use_zero = True if zero_size > 1 else False
|
|
|
|
local_rank = dist.get_rank()
|
|
|
|
|
|
|
|
clear_layout_converter()
|
|
|
|
|
|
|
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
|
|
|
tp_group, dp_group = proc_mesh.get_group_along_axis(0), proc_mesh.get_group_along_axis(1)
|
|
|
|
|
|
|
|
torch.set_default_dtype(dtype)
|
|
|
|
set_seed(42)
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Model Init
|
|
|
|
# ==============================
|
|
|
|
base_model = MlpModel().to(local_rank)
|
|
|
|
tp_model = TPModel(copy.deepcopy(base_model.linear1), copy.deepcopy(base_model.linear2), tp_group).to(local_rank)
|
|
|
|
|
|
|
|
base_param_group = setup_param_groups(base_model)
|
|
|
|
tp_param_group = setup_param_groups(tp_model)
|
|
|
|
# tp_param_group_, tp_shard_spec, tp_param_shape = setup_flatten_param_groups_sharding_spec_shape(tp_model)
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Optimizer Init
|
|
|
|
# ==============================
|
|
|
|
base_optim = Adafactor(base_param_group)
|
|
|
|
dist_optim = DistributedAdaFactor(tp_param_group)
|
|
|
|
|
|
|
|
# Setup distributed optimizer
|
|
|
|
if zero_size > 1:
|
|
|
|
base_optim = LowLevelZeroOptimizer(
|
|
|
|
base_optim,
|
|
|
|
overlap_communication=True,
|
|
|
|
initial_scale=128,
|
|
|
|
partition_grad=True,
|
|
|
|
dp_process_group=dp_group,
|
|
|
|
verbose=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
dist_optim = LowLevelZeroOptimizer(
|
|
|
|
dist_optim,
|
|
|
|
overlap_communication=True,
|
|
|
|
initial_scale=128,
|
|
|
|
partition_grad=True,
|
|
|
|
dp_process_group=dp_group,
|
|
|
|
verbose=True,
|
|
|
|
)
|
[MoE/ZeRO] Moe refactor with zero refactor (#5821)
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471)
* [Feauture] MoE refractor; Intergration with Mixtral (#5682)
* cherry pick from refractor-moe branch
* tests passed
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support ep + zero
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* add mixtral auto policy & move pipeline forward code to modeling folder
* [moe refactor] modify kernel test without Route Class
* [moe refactor] add moe tensor test path environment variable to github workflow
* fix typos
* fix moe test bug due to the code rebase
* [moe refactor] fix moe zero test, and little bug in low level zero
* fix typo
* add moe tensor path to github workflow
* remove some useless code
* fix typo & unify global variable XX_AXIS logic without using -1
* fix typo & prettifier the code
* remove print code & support zero 2 test
* remove useless code
* reanme function
* fix typo
* fix typo
* Further improve the test code
* remove print code
* [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test
* [moe refactor] skip some unit test which will be refactored later
* [moe refactor] fix unit import error
* [moe refactor] fix circular import issues
* [moe refactor] remove debug code
* [moe refactor] update github workflow
* [moe/zero] refactor low level optimizer (#5767)
* [zero] refactor low level optimizer
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] MoE refactor with newest version of ZeRO (#5801)
* [zero] remove redundant members in BucketStore (#5802)
* [zero] align api with previous version
* [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819)
* [moe refactor] update unit test with the refactored ZeRO and remove useless test
* move moe checkpoint to checkpoint folder and exchange global axis to class member
* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug
* fix zero unit test
* Add an assertion to prevent users from using it incorrectly
* [hotfix]Solve the compatibility issue of zero refactor (#5823)
* [moe refactor] update unit test with the refactored ZeRO and remove useless test
* move moe checkpoint to checkpoint folder and exchange global axis to class member
* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug
* fix zero unit test
* Add an assertion to prevent users from using it incorrectly
* Modify function parameter names to resolve compatibility issues
* [zero] fix missing hook removal (#5824)
* [MoE] Resolve .github conflict (#5829)
* [Fix/Example] Fix Llama Inference Loading Data Type (#5763)
* [fix/example] fix llama inference loading dtype
* revise loading dtype of benchmark llama3
* [release] update version (#5752)
* [release] update version
* [devops] update compatibility test
* [devops] update compatibility test
* [devops] update compatibility test
* [devops] update compatibility test
* [test] fix ddp plugin test
* [test] fix gptj and rpc test
* [devops] fix cuda ext compatibility
* [inference] fix flash decoding test
* [inference] fix flash decoding test
* fix (#5765)
* [test] Fix/fix testcase (#5770)
* [fix] branch for fix testcase;
* [fix] fix test_analyzer & test_auto_parallel;
* [fix] remove local change about moe;
* [fix] rm local change moe;
* [Hotfix] Add missing init file in inference.executor (#5774)
* [CI/tests] simplify some test case to reduce testing time (#5755)
* [ci/tests] simplify some test case to reduce testing time
* [ci/tests] continue to remove test case to reduce ci time cost
* restore some test config
* [ci/tests] continue to reduce ci time cost
* [misc] update dockerfile (#5776)
* [misc] update dockerfile
* [misc] update dockerfile
* [devops] fix docker ci (#5780)
* [Inference]Add Streaming LLM (#5745)
* Add Streaming LLM
* add some parameters to llama_generation.py
* verify streamingllm config
* add test_streamingllm.py
* modified according to the opinions of review
* add Citation
* change _block_tables tolist
* [hotfix] fix llama flash attention forward (#5777)
* [misc] Accelerate CI for zero and dist optim (#5758)
* remove fp16 from lamb
* remove d2h copy in checking states
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Test/CI] remove test cases to reduce CI duration (#5753)
* [test] smaller gpt2 test case
* [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py
* [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py
* [test] reduce test cases tests/test_zero/test_gemini/test_optim.py
* Revert "[test] smaller gpt2 test case"
Some tests might depend on the size of model (num of chunks)
This reverts commit df705a5210b8901645992adf276e320e48766ebf.
* [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py
* [CI] smaller test model for two mwo the two modifid cases
* [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there
* [hotfix] fix testcase in test_fx/test_tracer (#5779)
* [fix] branch for fix testcase;
* [fix] fix test_analyzer & test_auto_parallel;
* [fix] remove local change about moe;
* [fix] rm local change moe;
* [fix] fix test_deepfm_model & test_dlrf_model;
* [fix] fix test_hf_albert & test_hf_gpt;
* [gemini] optimize reduce scatter d2h copy (#5760)
* [gemini] optimize reduce scatter d2h copy
* [fix] fix missing reduce variable
* [refactor] remove legacy async reduce scatter code
* [gemini] missing sync
* Revert "[refactor] remove legacy async reduce scatter code"
This reverts commit 58ad76d4665032bbe548d066116d1c572ce98979.
* [gemini] further optimize with async all reduce
* [fix] pass flag from manager to chunk
* Allow building cuda extension without a device. (#5535)
Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are.
* [misc] fix dist logger (#5782)
* [install]fix setup (#5786)
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] update requirements (#5787)
* [shardformer] fix import (#5788)
* upgrade colossal-chat support tp_group>1, add sp for sft
* upgrade ppo dpo rm script
* run pre-commit
* moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy
* fix training script
* fix ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix transformers version
* remove duplicated test
* fix datasets version
* remove models that require huggingface auth from ci
* remove local data path
* update ci
* remove baichuan from template test due to transformer version conflict
* merge
* Refactor modeling by adding attention backend
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Fix tests and naming
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Pass inference model shard configs for module init
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Clean up
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* replace the customized dataloader setup with the build-in one
* replace the customized dataloader setup with the build-in one
* Remove flash attention backend
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* fix readme
* Fix test import
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* update sft trainning script
* [Inference]refactor baichuan (#5791)
* refactor baichuan
* remove unused code and add TODO for lazyinit
* [test] fix chatglm test kit (#5793)
* [shardformer] fix modeling of bloom and falcon (#5796)
* [test] fix qwen2 pytest distLarge (#5797)
* [Inference] Fix flash-attn import and add model test (#5794)
* Fix torch int32 dtype
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Fix flash-attn import
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Add generalized model test
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Remove exposed path to model
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Add default value for use_flash_attn
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Rename model test
Signed-off-by: char-1ee <xingjianli59@gmail.com>
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* [Gemini] Use async stream to prefetch and h2d data moving (#5781)
* use async stream to prefetch and h2d data moving
* Remove redundant code
* [gemini] quick fix on possible async operation (#5803)
* [gemini] quick fix on possible async operation
* [gemini] quick fix on possible async operation
* [shardformer] upgrade transformers to 4.39.3 (#5815)
* [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807)
* [shardformer] fix modeling of gpt2 and gptj
* [shardformer] fix whisper modeling
* [misc] update requirements
---------
Co-authored-by: ver217 <lhx0217@gmail.com>
* [shardformer]upgrade transformers for mistral (#5808)
* upgrade transformers for mistral
* fix
* fix
* [shardformer]upgrade transformers for llama (#5809)
* update transformers
fix
* fix
* fix
* [inference] upgrade transformers (#5810)
* update transformers
fix
* fix
* fix
* fix
* fix
* [gemini] update transformers for gemini (#5814)
---------
Co-authored-by: ver217 <lhx0217@gmail.com>
* Support 4d parallel + flash attention (#5789)
* support tp + sp + pp
* remove comments
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
* [zero] fix hook bug
* [zero] add low level optimizer back (#5839)
* [zero] fix param & refactor
* [zero] add back original low level opt
* [zero] remove moe related
* [zero] pass zero tests
* [zero] refactor
* [chore] add del func back
* [zero] comments and naming (#5840)
* [zero] modify api (#5843)
* [zero] modify api
* [test] remove _grad_store access in tests
* [test] fix (#5857)
* [CI] skip openmoe CI check
* [CI] fox pre-commit
* [zero] remove redundant memebr init (#5862)
* [misc] remove useless code, modify the pg mesh implementation
* [misc] remove useless code, modify the pg mesh implementation
* [misc] use tempfile
* resolve conflict with main branch
* [misc] use tempfile in test_moe_checkpoint.py
* [misc] remove useless code, add assertion about sequence parallel, move logger into function
* [misc] remove useless code
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
5 months ago
|
|
|
shard_to_param = dist_optim.master_to_working_param # {id(): param tensor} but flattened
|
|
|
|
dist_optim.optim.setup_distributed(
|
|
|
|
tp_group=tp_group,
|
|
|
|
dp_group=dp_group,
|
|
|
|
shard_to_working_param=shard_to_param,
|
|
|
|
use_zero=use_zero,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
shard_to_param = set_master_param_to_shard_param(tp_param_group)
|
|
|
|
dist_optim.setup_distributed(
|
|
|
|
tp_group=tp_group,
|
|
|
|
dp_group=dp_group,
|
|
|
|
shard_to_working_param=shard_to_param,
|
|
|
|
use_zero=use_zero,
|
|
|
|
)
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Correctness Verify
|
|
|
|
# ==============================
|
|
|
|
x = torch.randn(HEIGHT, WIDTH, device=local_rank)
|
|
|
|
|
|
|
|
out = base_model(x)
|
|
|
|
out_tp = tp_model(x)
|
|
|
|
|
|
|
|
if zero_size > 1:
|
|
|
|
dist_optim.backward(out_tp.sum())
|
|
|
|
base_optim.backward(out.sum())
|
|
|
|
else:
|
|
|
|
out_tp.sum().backward()
|
|
|
|
out.sum().backward()
|
|
|
|
|
|
|
|
base_optim.step()
|
|
|
|
dist_optim.step()
|
|
|
|
|
|
|
|
base_optim.zero_grad()
|
|
|
|
dist_optim.zero_grad()
|
|
|
|
|
|
|
|
for p, tp_p in zip(base_param_group, tp_param_group):
|
|
|
|
param_is_distributed = is_distributed_tensor(tp_p)
|
|
|
|
if param_is_distributed:
|
|
|
|
shard_spec = get_sharding_spec(tp_p)
|
|
|
|
if len(shard_spec.sharding_sequence) >= 2:
|
|
|
|
# Col Parallel
|
|
|
|
if shard_spec.sharding_sequence[0] == "R":
|
|
|
|
p = p.chunk(tp_size, dim=-1)[dist.get_rank(tp_group)]
|
|
|
|
# ROW Parallel
|
|
|
|
if shard_spec.sharding_sequence[-1] == "R":
|
|
|
|
p = p.chunk(tp_size, dim=0)[dist.get_rank(tp_group)]
|
|
|
|
else:
|
|
|
|
# TP bias
|
|
|
|
p = p.chunk(tp_size, dim=-1)[dist.get_rank(tp_group)]
|
|
|
|
|
|
|
|
correctness_verify(p, tp_p, dtype)
|
|
|
|
clear_layout_converter()
|
|
|
|
Randomizer.reset_index()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
print(f"Zero Test Passed")
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize(
|
|
|
|
"test_config",
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"stage": 1,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"stage": 2,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def exam_bert_test_on_lowlevelzero_plugin(test_config):
|
|
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
|
|
|
|
model_list = [
|
|
|
|
"transformers_bert",
|
|
|
|
]
|
|
|
|
clear_layout_converter()
|
|
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
|
|
if name in model_list:
|
|
|
|
(
|
|
|
|
org_model,
|
|
|
|
org_optimizer,
|
|
|
|
sharded_model,
|
|
|
|
sharded_optimizer,
|
|
|
|
criterion,
|
|
|
|
booster,
|
|
|
|
) = build_model_from_low_level_zero_plugin(model_fn, loss_fn, test_config, Adafactor, Adafactor)
|
|
|
|
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_low_level_zero_plugin(
|
|
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
|
|
)
|
|
|
|
|
|
|
|
# LowLevelZero not need warp
|
|
|
|
# bert = unwrap_model(org_model, "BertModel", "bert")
|
|
|
|
# sharded_bert = unwrap_model(sharded_model, "BertModel", "bert")
|
|
|
|
weight_layer_for_check = [
|
|
|
|
"bert.encoder.layer.0.output.dense.weight",
|
|
|
|
"bert.encoder.layer.0.output.dense.weight",
|
|
|
|
]
|
|
|
|
|
|
|
|
org_optimizer.step()
|
|
|
|
sharded_optimizer.step()
|
|
|
|
|
|
|
|
# check weights
|
|
|
|
if test_config["precision"] == "bf16":
|
|
|
|
atol, rtol = 5e-4, 5e-4
|
|
|
|
else:
|
|
|
|
atol, rtol = 5e-4, 5e-4
|
|
|
|
|
|
|
|
check_dist_param(org_model, sharded_model, weight_layer_for_check, atol, rtol)
|
|
|
|
check_optim_states(org_optimizer, sharded_optimizer.optim)
|
|
|
|
|
|
|
|
Randomizer.reset_index()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
print(f"Bert Model Zoo Test Passed")
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize(
|
|
|
|
"test_config",
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"tp_size": 1,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 2,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 4,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 2,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 1,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
# @duanjunwen TODO: fix this test case. Currently params are sharded but are not dtensor here, throwing an error.
|
|
|
|
# Probably due to HybridParallelAMPOptimizer replacing some master params ?
|
|
|
|
# {
|
|
|
|
# "tp_size": 4,
|
|
|
|
# "num_microbatches": 4,
|
|
|
|
# "zero_stage": 0,
|
|
|
|
# "precision": "bf16",
|
|
|
|
# },
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def exam_bert_test_on_hybrid_plugin(test_config):
|
|
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
|
|
|
|
test_config["use_lazy_init"] = False
|
|
|
|
test_config["pp_size"] = 1 # Do NOT test Pipeline Parallel
|
|
|
|
test_config["initial_scale"] = 2**16 # avoid overflow
|
|
|
|
model_list = [
|
|
|
|
"transformers_bert",
|
|
|
|
]
|
|
|
|
clear_layout_converter()
|
|
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
|
|
if name in model_list:
|
|
|
|
(
|
|
|
|
org_model,
|
|
|
|
org_optimizer,
|
|
|
|
sharded_model,
|
|
|
|
sharded_optimizer,
|
|
|
|
criterion,
|
|
|
|
booster,
|
|
|
|
) = build_model_from_hybrid_plugin(model_fn, loss_fn, test_config, Adafactor, DistributedAdaFactor)
|
|
|
|
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
|
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
|
|
)
|
|
|
|
|
|
|
|
stage_manager = booster.plugin.stage_manager
|
|
|
|
tp_group = booster.plugin.tp_group
|
|
|
|
|
|
|
|
bert = unwrap_model(org_model, "BertModel", "bert")
|
|
|
|
sharded_bert = unwrap_model(sharded_model, "BertModel", "bert")
|
|
|
|
weight_layer_for_check = ["encoder.layer[0].output.dense", "encoder.layer[1].output.dense"]
|
|
|
|
|
|
|
|
org_optimizer.step()
|
|
|
|
sharded_optimizer.step()
|
|
|
|
|
|
|
|
# check weights
|
|
|
|
if test_config["precision"] == "bf16":
|
|
|
|
atol, rtol = 5e-4, 5e-4
|
|
|
|
else:
|
|
|
|
atol, rtol = 5e-4, 5e-4
|
|
|
|
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
|
|
|
|
check_weight(bert, sharded_bert, weight_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1)
|
|
|
|
# check optim states
|
|
|
|
check_dist_optim_state(org_optimizer, sharded_optimizer.optim)
|
|
|
|
|
|
|
|
clear_layout_converter()
|
|
|
|
Randomizer.reset_index()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
print(f"Bert Model Zoo Test Passed")
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
disable_existing_loggers()
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
|
|
exam_dist_adafactor_base()
|
|
|
|
exam_dist_adafactor_zero()
|
|
|
|
exam_bert_test_on_lowlevelzero_plugin()
|
|
|
|
exam_bert_test_on_hybrid_plugin()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_dist_adafactor():
|
|
|
|
spawn(run_dist, nprocs=4)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_dist_adafactor()
|