mirror of https://github.com/hpcaitech/ColossalAI
51 lines
1.4 KiB
Python
51 lines
1.4 KiB
Python
![]() |
import pytest
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from colossalai.accelerator import get_accelerator
|
||
|
from colossalai.quantization.fp8 import linear_fp8
|
||
|
from colossalai.quantization.fp8_hook import FP8Hook
|
||
|
from colossalai.tensor.colo_parameter import ColoParameter
|
||
|
from colossalai.tensor.param_op_hook import ColoParamOpHookManager
|
||
|
from colossalai.utils import get_current_device
|
||
|
|
||
|
REPLACED = False
|
||
|
TRIGGERED = False
|
||
|
|
||
|
|
||
|
def new_linear_fp8(x, w, bias=None):
|
||
|
global TRIGGERED
|
||
|
TRIGGERED = True
|
||
|
return linear_fp8(x, w, bias)
|
||
|
|
||
|
|
||
|
class FP8TestHook(FP8Hook):
|
||
|
def rewrite_op(self, func):
|
||
|
func = super().rewrite_op(func)
|
||
|
if func is linear_fp8:
|
||
|
global REPLACED
|
||
|
REPLACED = True
|
||
|
return new_linear_fp8
|
||
|
return func
|
||
|
|
||
|
|
||
|
D_IN, D_OUT = 16, 32
|
||
|
B, S = 2, 64
|
||
|
DTYPE = torch.bfloat16
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(get_accelerator().get_device_capability()[0] < 9, reason="Test requires device capability >= 9.0")
|
||
|
def test_fp8_hook():
|
||
|
# create tensors
|
||
|
w = nn.Parameter(torch.rand(D_OUT, D_IN, device=get_current_device(), dtype=DTYPE))
|
||
|
x = torch.rand(B, S, D_IN, device=get_current_device(), dtype=DTYPE, requires_grad=True)
|
||
|
w.__class__ = ColoParameter
|
||
|
w.__init__(w, requires_grad=True)
|
||
|
hook = FP8TestHook()
|
||
|
with ColoParamOpHookManager.use_hooks(hook):
|
||
|
o = F.linear(x, w)
|
||
|
assert o.shape == (B, S, D_OUT)
|
||
|
assert REPLACED
|
||
|
assert TRIGGERED
|