mirror of https://github.com/hpcaitech/ColossalAI
238 lines
7.9 KiB
Markdown
238 lines
7.9 KiB
Markdown
![]() |
# 零气泡流水线并行
|
|||
|
作者: [Junwen Duan](https://github.com/duanjunwen), [Hongxin Liu](https://github.com/ver217)
|
|||
|
|
|||
|
**相关论文**
|
|||
|
- [Zero Bubble Pipeline Parallelism](https://arxiv.org/abs/2401.10241)
|
|||
|
|
|||
|
## 介绍
|
|||
|
零气泡(V Schedule):
|
|||
|
与早期工作中的1F1B方案相比,零气泡流水线并行将B分成两个阶段(也称为激活梯度和权重梯度),形如1F1B1W这样的方案可以进一步减少气泡。
|
|||
|
|
|||
|
## 使用
|
|||
|
我们将演示如何在 4 个 GPU 上使用带有 booster API 的 ZeroBubble
|
|||
|
|
|||
|
### step 1. 引用仓库
|
|||
|
```python
|
|||
|
import torch
|
|||
|
import torch.distributed as dist
|
|||
|
import torch.nn as nn
|
|||
|
from torch.testing import assert_close
|
|||
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|||
|
from transformers.models.llama.modeling_llama import LlamaModel
|
|||
|
|
|||
|
import colossalai
|
|||
|
from colossalai.booster.booster import Booster
|
|||
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import HybridParallelPlugin
|
|||
|
from colossalai.pipeline.schedule.zero_bubble_pp import ZeroBubbleVPipeScheduler
|
|||
|
```
|
|||
|
|
|||
|
### step 2. 初始化分布式环境
|
|||
|
```python
|
|||
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|||
|
```
|
|||
|
|
|||
|
### step 3. 初始化模型优化器
|
|||
|
建立我们的模型和优化器 我们创建了一个带有8层Decoder-Layer的 Llama。然后,使用get_v_schedule()函数创建PipelineGraph和Pipeline schedule。
|
|||
|
|
|||
|
```python
|
|||
|
# Global Param
|
|||
|
NUM_BATCH = 8
|
|||
|
NUM_TOK_PER_BATCH = 4
|
|||
|
NUM_LAYERS = 8
|
|||
|
HIDDEN_SIZE_PER_HEAD = 4
|
|||
|
NUM_HEADS = 4
|
|||
|
# Init Llama from huggingface
|
|||
|
configuration = LlamaConfig(
|
|||
|
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
|||
|
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
|||
|
num_hidden_layers=NUM_LAYERS,
|
|||
|
num_attention_heads=NUM_HEADS,
|
|||
|
num_key_value_heads=NUM_HEADS,
|
|||
|
attn_implementation="flash_attention_2",
|
|||
|
)
|
|||
|
model = LlamaModel(configuration).cuda()
|
|||
|
optimizer = torch.optim.Adam(torch_model.parameters(), lr=1)
|
|||
|
```
|
|||
|
### step 4.初始化流水线Schedule
|
|||
|
然后,我们需要使用 get_v_schedule() 函数创建 PipelineGraph 和 PipelineSchedule。我们需要用以下参数初始化 PipelineGraph。
|
|||
|
x_cost 表示每个模型块的操作 x 所消耗的运行时间。
|
|||
|
x_mem 表示每个模型块的操作 x 所消耗的内存量。
|
|||
|
这些参数都是在流水线启动前估算并填入的。事实上,在模型的实际计算过程中,根据运行时间和内存成本可以获得更好的结果。
|
|||
|
在下面的例子中,我们假设模型的正向、反向 B 和反向 W 的计算时间分别为 1、1、1,p2p 通信时间为 1。
|
|||
|
```python
|
|||
|
# Init schedule
|
|||
|
h, a, s = config.hidden_size, config.num_attention_heads, 1024
|
|||
|
mem_f = 34 * h + 5 * a * s
|
|||
|
mem_w = -32 * h
|
|||
|
mem_b = -mem_w - mem_f
|
|||
|
graph = PipelineGraph(
|
|||
|
n_stage=pp_size,
|
|||
|
n_micro=num_microbatches,
|
|||
|
f_cost=1,
|
|||
|
b_cost=1,
|
|||
|
w_cost=1,
|
|||
|
c_cost=1,
|
|||
|
f_mem=mem_f,
|
|||
|
b_mem=mem_b,
|
|||
|
w_mem=mem_w,
|
|||
|
)
|
|||
|
zbv_schedule = graph.get_v_schedule()
|
|||
|
```
|
|||
|
|
|||
|
### step 5.初始化Booster
|
|||
|
在初始化Plugin时输入pp_style="zbv",以使用ZeroBubble流水线并行。
|
|||
|
```python
|
|||
|
plugin = HybridParallelPlugin(
|
|||
|
pp_size=4,
|
|||
|
num_microbatches=4,
|
|||
|
tp_size=1,
|
|||
|
sp_size=1,
|
|||
|
zero_stage=1,
|
|||
|
initial_scale=1,
|
|||
|
find_unused_parameters=True,
|
|||
|
pp_style="zbv",
|
|||
|
scheduler_nodes=zbv_schedule,
|
|||
|
num_model_chunks=2,
|
|||
|
)
|
|||
|
|
|||
|
dp_size = plugin.dp_size
|
|||
|
booster = Booster(plugin=plugin)
|
|||
|
```
|
|||
|
|
|||
|
### step 6.训练模型
|
|||
|
```python
|
|||
|
steps = 10
|
|||
|
for step in range(steps):
|
|||
|
input_embeddings = torch.rand(
|
|||
|
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
|||
|
).cuda()
|
|||
|
dist.all_reduce(
|
|||
|
input_embeddings, group=plugin.pp_group
|
|||
|
)
|
|||
|
data_iter = iter([{"inputs_embeds": input_embeddings}])
|
|||
|
output = booster.execute_pipeline(
|
|||
|
data_iter,
|
|||
|
model,
|
|||
|
lambda x, y: x.last_hidden_state.mean(),
|
|||
|
optimizer,
|
|||
|
return_loss=True,
|
|||
|
return_outputs=True,
|
|||
|
)
|
|||
|
optimizer.step()
|
|||
|
optimizer.zero_grad()
|
|||
|
```
|
|||
|
|
|||
|
## 进阶使用技巧
|
|||
|
在 ColossalAI 中,通过使用MetaCache和混合并行的ZeroBubble,可以获得更好的训练性能。
|
|||
|
|
|||
|
### 1.在ZeroBubble中使用元数据缓存
|
|||
|
在初始化Plugin时输入 "enable_metadata_cache=True",以便在ZeroBubble管道中使用元数据缓存。
|
|||
|
```python
|
|||
|
plugin = HybridParallelPlugin(
|
|||
|
pp_size=2,
|
|||
|
num_microbatches=4,
|
|||
|
tp_size=2,
|
|||
|
sp_size=2,
|
|||
|
zero_stage=1,
|
|||
|
initial_scale=1,
|
|||
|
enable_metadata_cache=True,
|
|||
|
find_unused_parameters=True,
|
|||
|
pp_style="zbv",
|
|||
|
scheduler_nodes=zbv_schedule,
|
|||
|
num_model_chunks=2,
|
|||
|
)
|
|||
|
```
|
|||
|
|
|||
|
### 2.同时使用ZeroBubble和混合并行
|
|||
|
在初始化插件时传递 pp_size, tp_size, sp_size, 以便使用零气泡混合并行管道(HybridParallel with ZeroBubble Pipeline)。
|
|||
|
```python
|
|||
|
plugin = HybridParallelPlugin(
|
|||
|
pp_size=2,
|
|||
|
num_microbatches=2,
|
|||
|
tp_size=2,
|
|||
|
sp_size=2,
|
|||
|
zero_stage=1,
|
|||
|
initial_scale=1,
|
|||
|
find_unused_parameters=True,
|
|||
|
pp_style="zbv",
|
|||
|
scheduler_nodes=zbv_schedule,
|
|||
|
num_model_chunks=2,
|
|||
|
)
|
|||
|
```
|
|||
|
性能指标
|
|||
|
<table>
|
|||
|
<tr>
|
|||
|
<th nowrap="nowrap">HybridParallel Strategy</th>
|
|||
|
<th nowrap="nowrap" align="center">Pipeline Parallel</th>
|
|||
|
<th nowrap="nowrap" align="center">Sequence Parallel + Pipeline Parallel</th>
|
|||
|
<th nowrap="nowrap" align="center">Data Parallel + Pipeline Parallel</th>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td nowrap="nowrap" align="center" title="1F1B">With 1F1B</td>
|
|||
|
<td nowrap="nowrap" align="center">15.27 samples/sec</td>
|
|||
|
<td nowrap="nowrap" align="center">17.22 samples/sec</td>
|
|||
|
<td nowrap="nowrap" align="center">14.06 samples/sec</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td nowrap="nowrap" align="center" title="Zero Bubble">With Zero Bubble</td>
|
|||
|
<td nowrap="nowrap" align="center">17.36 samples/sec</td>
|
|||
|
<td nowrap="nowrap" align="center">18.38 samples/sec</td>
|
|||
|
<td nowrap="nowrap" align="center">14.44 samples/sec</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td colspan="39"></td>
|
|||
|
</tr>
|
|||
|
</table>
|
|||
|
|
|||
|
## 模型兼容性
|
|||
|
<table>
|
|||
|
<tr>
|
|||
|
<th nowrap="nowrap">Shardformer/Model</th>
|
|||
|
<th nowrap="nowrap" align="center">Bert</th>
|
|||
|
<th nowrap="nowrap" align="center">Blip2</th>
|
|||
|
<th nowrap="nowrap" align="center">Bloom</th>
|
|||
|
<th nowrap="nowrap" align="center">Chatglm2</th>
|
|||
|
<th nowrap="nowrap" align="center">Command</th>
|
|||
|
<th nowrap="nowrap" align="center">Deepseek</th>
|
|||
|
<th nowrap="nowrap" align="center">Falcon</th>
|
|||
|
<th nowrap="nowrap" align="center">GPT2</th>
|
|||
|
<th nowrap="nowrap" align="center">Gptj</th>
|
|||
|
<th nowrap="nowrap" align="center">Llama</th>
|
|||
|
<th nowrap="nowrap" align="center">Mistral</th>
|
|||
|
<th nowrap="nowrap" align="center">Opt</th>
|
|||
|
<th nowrap="nowrap" align="center">Qwen2</th>
|
|||
|
<th nowrap="nowrap" align="center">Sam</th>
|
|||
|
<th nowrap="nowrap" align="center">T5</th>
|
|||
|
<th nowrap="nowrap" align="center">Vit</th>
|
|||
|
<th nowrap="nowrap" align="center">Whisper</th>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td nowrap="nowrap" align="center" title="ZeroBubble">ZeroBubble</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
<td nowrap="nowrap" align="center">✔️</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td colspan="39"></td>
|
|||
|
</tr>
|
|||
|
</table>
|
|||
|
|
|||
|
## API 参考
|
|||
|
{{ autodoc:colossalai.pipeline.schedule.zero_bubble_pp.ZeroBubbleVPipeScheduler }}
|
|||
|
|
|||
|
<!-- doc-test-command: torchrun --standalone --nproc_per_node=4 zerobubble_pipeline_parallelism.py -->
|