|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
import pprint
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.nn.modules.loss import _Loss
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
from torch.optim.optimizer import Optimizer
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
|
|
|
from colossalai.accelerator import get_accelerator
|
|
|
|
from colossalai.context import Config, ConfigException
|
|
|
|
from colossalai.interface import OptimizerWrapper
|
|
|
|
from colossalai.legacy.amp import AMP_TYPE, convert_to_amp
|
|
|
|
from colossalai.legacy.amp.naive_amp import NaiveAMPModel
|
|
|
|
from colossalai.legacy.builder.builder import build_gradient_handler
|
|
|
|
from colossalai.legacy.context import ParallelMode
|
|
|
|
from colossalai.legacy.core import global_context as gpc
|
|
|
|
from colossalai.legacy.engine import Engine
|
|
|
|
from colossalai.legacy.engine.gradient_accumulation import accumulate_gradient
|
|
|
|
from colossalai.legacy.engine.schedule import (
|
|
|
|
InterleavedPipelineSchedule,
|
|
|
|
NonPipelineSchedule,
|
|
|
|
PipelineSchedule,
|
|
|
|
get_tensor_shape,
|
|
|
|
)
|
|
|
|
from colossalai.legacy.utils import is_using_ddp, is_using_pp, is_using_sequence, sync_model_param
|
|
|
|
from colossalai.legacy.zero import ShardedOptimizerV2, convert_to_zero_v2
|
|
|
|
from colossalai.legacy.zero.gemini.ophooks import BaseOpHook
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
|
|
|
|
|
|
|
|
def get_default_parser():
|
|
|
|
"""Reads user command line and uses an argument parser to parse the input arguments.
|
|
|
|
Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Namespace: Returns the parser with the default arguments, the user may add customized arguments into this parser.
|
|
|
|
"""
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--config", type=str, help="path to the config file")
|
|
|
|
parser.add_argument("--host", type=str, help="the master address for distributed training")
|
|
|
|
parser.add_argument("--port", type=int, help="the master port for distributed training")
|
|
|
|
parser.add_argument("--world_size", type=int, help="world size for distributed training")
|
|
|
|
parser.add_argument("--rank", type=int, help="rank for the default process group")
|
|
|
|
parser.add_argument("--local_rank", type=int, help="local rank on the node")
|
|
|
|
parser.add_argument("--backend", type=str, default="nccl", help="backend for distributed communication")
|
|
|
|
return parser
|
|
|
|
|
|
|
|
|
|
|
|
def launch(
|
|
|
|
config: Union[str, Path, Config, Dict],
|
|
|
|
rank: int,
|
|
|
|
world_size: int,
|
|
|
|
host: str,
|
|
|
|
port: int,
|
|
|
|
backend: str = "nccl",
|
|
|
|
local_rank: int = None,
|
|
|
|
seed: int = 1024,
|
|
|
|
verbose: bool = True,
|
|
|
|
):
|
|
|
|
"""This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input
|
|
|
|
arguments are not given. Then initialize and set distributed environment by calling global_context's functions.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
config (Union[str, dict, Config]): Config file or config file path are both acceptable
|
|
|
|
rank (int): Rank for the default process group
|
|
|
|
world_size (int): World size of the default process group
|
|
|
|
host (str): The master address for distributed training
|
|
|
|
port (str): The master port for distributed training
|
|
|
|
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
|
|
|
|
local_rank (int, optional):
|
|
|
|
Rank for the process on the node and is used to set the default CUDA device,
|
|
|
|
defaults to None. If local_rank = None, the default device ordinal will be calculated automatically.
|
|
|
|
seed (int, optional): Specified random seed for every process. Defaults to 1024.
|
|
|
|
verbose (bool, optional): Whether to print logs. Defaults to True.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
Exception: Raise exception when config type is wrong
|
|
|
|
"""
|
|
|
|
gpc.verbose = verbose
|
|
|
|
|
|
|
|
# set config
|
|
|
|
assert isinstance(
|
|
|
|
config, (Config, str, Path, dict)
|
|
|
|
), f"expected argument config to be Config, str or Path, but got {type(config)}"
|
|
|
|
if not isinstance(config, Config) and isinstance(config, dict):
|
|
|
|
config = Config(config)
|
|
|
|
if isinstance(config, (str, Path)):
|
|
|
|
config = Config.from_file(config)
|
|
|
|
gpc.load_config(config)
|
|
|
|
|
|
|
|
# init default process group
|
|
|
|
gpc.init_global_dist(rank, world_size, backend, host, port)
|
|
|
|
|
|
|
|
# init process groups for different parallel modes from config
|
|
|
|
gpc.init_parallel_groups()
|
|
|
|
|
|
|
|
# set cuda device
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
# if local rank is not given, calculate automatically
|
|
|
|
gpc.set_device(local_rank)
|
|
|
|
|
|
|
|
# set the number of processes running on the same node
|
|
|
|
gpc.detect_num_processes_on_current_node()
|
|
|
|
|
|
|
|
gpc.set_seed(seed)
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
logger = get_dist_logger()
|
|
|
|
logger.info(
|
|
|
|
f"Distributed environment is initialized, "
|
|
|
|
f"data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, "
|
|
|
|
f"tensor parallel size: {gpc.tensor_parallel_size}",
|
|
|
|
ranks=[0],
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def launch_from_slurm(
|
|
|
|
config: Union[str, Path, Config, Dict],
|
|
|
|
host: str,
|
|
|
|
port: int,
|
|
|
|
backend: str = "nccl",
|
|
|
|
seed: int = 1024,
|
|
|
|
verbose: bool = True,
|
|
|
|
):
|
|
|
|
"""A wrapper for colossalai.launch for SLURM launcher by reading rank and world size from the environment variables
|
|
|
|
set by SLURM
|
|
|
|
|
|
|
|
Args:
|
|
|
|
config (Union[str, dict, Config]): Config file or config file path are both acceptable
|
|
|
|
host (str): The master address for distributed training
|
|
|
|
port (str): The master port for distributed training
|
|
|
|
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
|
|
|
|
seed (int, optional): Specified random seed for every process. Defaults to 1024.
|
|
|
|
verbose (bool, optional): Whether to print logs. Defaults to True.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
rank = int(os.environ["SLURM_PROCID"])
|
|
|
|
world_size = int(os.environ["SLURM_NPROCS"])
|
|
|
|
except KeyError as e:
|
|
|
|
raise RuntimeError(
|
|
|
|
f"Could not find {e} in the SLURM environment, visit https://www.colossalai.org/ for more information on launching with SLURM"
|
|
|
|
)
|
|
|
|
|
|
|
|
launch(
|
|
|
|
config=config,
|
|
|
|
rank=rank,
|
|
|
|
world_size=world_size,
|
|
|
|
host=host,
|
|
|
|
port=port,
|
|
|
|
backend=backend,
|
|
|
|
seed=seed,
|
|
|
|
verbose=verbose,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def launch_from_openmpi(
|
|
|
|
config: Union[str, Path, Config, Dict],
|
|
|
|
host: str,
|
|
|
|
port: int,
|
|
|
|
backend: str = "nccl",
|
|
|
|
seed: int = 1024,
|
|
|
|
verbose: bool = True,
|
|
|
|
):
|
|
|
|
"""A wrapper for colossalai.launch for OpenMPI launcher by reading rank and world size from the environment variables
|
|
|
|
set by OpenMPI
|
|
|
|
|
|
|
|
Args:
|
|
|
|
config (Union[str, dict, Config]): Config file or config file path are both acceptable
|
|
|
|
host (str): The master address for distributed training
|
|
|
|
port (str): The master port for distributed training
|
|
|
|
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
|
|
|
|
seed (int, optional): Specified random seed for every process. Defaults to 1024.
|
|
|
|
verbose (bool, optional): Whether to print logs. Defaults to True.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
|
|
|
|
local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])
|
|
|
|
world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"])
|
|
|
|
except KeyError as e:
|
|
|
|
raise RuntimeError(
|
|
|
|
f"Could not find {e} in the OpenMPI environment, visit https://www.colossalai.org/ for more information on launching with OpenMPI"
|
|
|
|
)
|
|
|
|
|
|
|
|
launch(
|
|
|
|
config=config,
|
|
|
|
local_rank=local_rank,
|
|
|
|
rank=rank,
|
|
|
|
world_size=world_size,
|
|
|
|
host=host,
|
|
|
|
port=port,
|
|
|
|
backend=backend,
|
|
|
|
seed=seed,
|
|
|
|
verbose=verbose,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def launch_from_torch(
|
|
|
|
config: Union[str, Path, Config, Dict], backend: str = "nccl", seed: int = 1024, verbose: bool = True
|
|
|
|
):
|
|
|
|
"""A wrapper for colossalai.launch for torchrun or torch.distributed.launch by reading rank and world size
|
|
|
|
from the environment variables set by PyTorch
|
|
|
|
|
|
|
|
Args:
|
|
|
|
config (Union[str, dict, Config]): Config file or config file path are both acceptable
|
|
|
|
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
|
|
|
|
seed (int, optional): Specified random seed for every process. Defaults to 1024.
|
|
|
|
verbose (bool, optional): Whether to print logs. Defaults to True.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
rank = int(os.environ["RANK"])
|
|
|
|
local_rank = int(os.environ["LOCAL_RANK"])
|
|
|
|
world_size = int(os.environ["WORLD_SIZE"])
|
|
|
|
host = os.environ["MASTER_ADDR"]
|
|
|
|
port = int(os.environ["MASTER_PORT"])
|
|
|
|
except KeyError as e:
|
|
|
|
raise RuntimeError(
|
|
|
|
f"Could not find {e} in the torch environment, visit https://www.colossalai.org/ for more information on launching with torch"
|
|
|
|
)
|
|
|
|
|
|
|
|
launch(
|
|
|
|
config=config,
|
|
|
|
local_rank=local_rank,
|
|
|
|
rank=rank,
|
|
|
|
world_size=world_size,
|
|
|
|
host=host,
|
|
|
|
port=port,
|
|
|
|
backend=backend,
|
|
|
|
seed=seed,
|
|
|
|
verbose=verbose,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def initialize(
|
|
|
|
model: nn.Module,
|
|
|
|
optimizer: Optimizer,
|
|
|
|
criterion: Optional[_Loss] = None,
|
|
|
|
train_dataloader: Optional[Iterable] = None,
|
|
|
|
test_dataloader: Optional[Iterable] = None,
|
|
|
|
lr_scheduler: Optional[_LRScheduler] = None,
|
|
|
|
ophooks: Optional[List[BaseOpHook]] = None,
|
|
|
|
verbose: bool = True,
|
|
|
|
) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]:
|
|
|
|
"""Core function to wrap the essential training components with our functionality based on the config which is
|
|
|
|
loaded into gpc.config.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (:class:`torch.nn.Module` or Callable): Your model instance or a function to build the model.
|
|
|
|
optimizer (:class:`torch.optim.optimizer.Optimizer` or :class:`Type[torch.optim.optimizer]`):
|
|
|
|
Your optimizer instance.
|
|
|
|
criterion (:class:`torch.nn.modules.loss._Loss`, optional): Your criterion instance.
|
|
|
|
train_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for training.
|
|
|
|
test_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for testing.
|
|
|
|
lr_scheduler (:class:`torch.nn.lr_scheduler._LRScheduler`, optional): Your lr scheduler instance, optional.
|
|
|
|
verbose (bool, optional): Whether to print logs.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple (engine, train_dataloader, test_dataloader, lr_scheduler):
|
|
|
|
A tuple of ``(engine, train_dataloader, test_dataloader, lr_scheduler)``
|
|
|
|
where only ``engine`` could not be None.
|
|
|
|
"""
|
|
|
|
# get logger
|
|
|
|
logger = get_dist_logger()
|
|
|
|
gpc.verbose = verbose
|
|
|
|
|
|
|
|
# get config from gpc
|
|
|
|
config = gpc.config
|
|
|
|
|
|
|
|
# print config
|
|
|
|
if verbose:
|
|
|
|
logger.info(
|
|
|
|
f"\n========== Your Config ========\n"
|
|
|
|
f"{pprint.pformat(gpc.config)}\n"
|
|
|
|
f"================================\n",
|
|
|
|
ranks=[0],
|
|
|
|
)
|
|
|
|
|
|
|
|
# cudnn
|
|
|
|
cudnn_benchmark = config.get("cudnn_benchmark", False)
|
|
|
|
cudnn_deterministic = config.get("cudnn_deterministic", False)
|
|
|
|
torch.backends.cudnn.benchmark = cudnn_benchmark
|
|
|
|
torch.backends.cudnn.deterministic = cudnn_deterministic
|
|
|
|
if verbose:
|
|
|
|
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
|
|
|
|
|
|
|
|
# zero
|
|
|
|
use_zero = hasattr(gpc.config, "zero")
|
|
|
|
if use_zero:
|
|
|
|
zero_cfg = gpc.config.get("zero", None)
|
|
|
|
if zero_cfg is not None:
|
|
|
|
cfg_ = zero_cfg.copy()
|
|
|
|
else:
|
|
|
|
cfg_ = {}
|
|
|
|
optimizer_config = zero_cfg.get("optimizer_config", None)
|
|
|
|
model_config = zero_cfg.get("model_config", None)
|
|
|
|
model, optimizer = convert_to_zero_v2(
|
|
|
|
model, optimizer, model_config=model_config, optimizer_config=optimizer_config
|
|
|
|
)
|
|
|
|
|
|
|
|
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
|
|
|
|
else:
|
|
|
|
if isinstance(model, nn.Module):
|
|
|
|
# first sync model across dp ranks
|
|
|
|
model.to(get_accelerator().get_current_device())
|
|
|
|
elif isinstance(model, Callable):
|
|
|
|
model = model().to(get_accelerator().get_current_device())
|
|
|
|
|
|
|
|
# optimizer maybe a optimizer_cls
|
|
|
|
if isinstance(optimizer, Callable):
|
|
|
|
optimizer = optimizer(model.parameters())
|
|
|
|
logger.warning("Initializing an non ZeRO model with optimizer class")
|
|
|
|
|
|
|
|
if not use_zero:
|
|
|
|
if is_using_sequence():
|
|
|
|
sync_model_param(model, ParallelMode.SEQUENCE_DP)
|
|
|
|
elif is_using_ddp():
|
|
|
|
sync_model_param(model, ParallelMode.DATA)
|
|
|
|
else:
|
|
|
|
logger.warning(
|
|
|
|
"The parameters of models is not automatically synchronized.\n"
|
|
|
|
"Please make sure that all parameters are the same in data parallel group.",
|
|
|
|
ranks=[0],
|
|
|
|
)
|
|
|
|
|
|
|
|
# check amp and zero
|
|
|
|
fp16_cfg = gpc.config.get("fp16", None)
|
|
|
|
|
|
|
|
if fp16_cfg is not None and fp16_cfg.mode is not None and use_zero:
|
|
|
|
raise ConfigException(
|
|
|
|
"It is not allowed to set fp16 and zero configuration in your config file at the same time"
|
|
|
|
)
|
|
|
|
|
|
|
|
# clip grad norm
|
|
|
|
clip_grad_norm = gpc.config.get("clip_grad_norm", 0.0)
|
|
|
|
|
|
|
|
# initialize amp
|
|
|
|
amp_mode = None
|
|
|
|
if fp16_cfg is not None and fp16_cfg.mode is not None:
|
|
|
|
cfg_ = fp16_cfg.copy()
|
|
|
|
amp_mode = cfg_.pop("mode")
|
|
|
|
if is_using_pp():
|
|
|
|
assert amp_mode == AMP_TYPE.NAIVE, "Pipeline only support NaiveAMP currently"
|
|
|
|
if amp_mode == AMP_TYPE.NAIVE:
|
|
|
|
cfg_["clip_grad_norm"] = clip_grad_norm
|
|
|
|
model, optimizer, criterion = convert_to_amp(
|
|
|
|
model=model, optimizer=optimizer, criterion=criterion, mode=amp_mode, amp_config=cfg_
|
|
|
|
)
|
|
|
|
|
|
|
|
# get torch ddp config
|
|
|
|
torch_ddp_cfg = gpc.config.get("torch_ddp", dict())
|
|
|
|
|
|
|
|
# gradient handler
|
|
|
|
gradient_handler_cfg = gpc.config.get("gradient_handler", None)
|
|
|
|
if gradient_handler_cfg is None:
|
|
|
|
# if gradient handler is not specified in the configuration file,
|
|
|
|
# check in the following order
|
|
|
|
# 1. if optimizer is ZERO, then use zero grad handler
|
|
|
|
# 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp
|
|
|
|
# 3. if using pipeline and dp size larger than 1, use data parallel grad handler
|
|
|
|
if isinstance(optimizer, ShardedOptimizerV2):
|
|
|
|
gradient_handler_cfg = [dict(type="ZeROGradientHandler")]
|
|
|
|
if verbose:
|
|
|
|
logger.info(
|
|
|
|
"Training with zero is detected, ZeROGradientHandler is automatically "
|
|
|
|
"added even though not specified in the configuration",
|
|
|
|
ranks=[0],
|
|
|
|
)
|
|
|
|
elif is_using_sequence():
|
|
|
|
model = DDP(
|
|
|
|
model,
|
|
|
|
process_group=gpc.get_group(ParallelMode.SEQUENCE_DP),
|
|
|
|
device_ids=[torch.cuda.current_device()],
|
|
|
|
**torch_ddp_cfg,
|
|
|
|
)
|
|
|
|
if verbose:
|
|
|
|
logger.info(
|
|
|
|
"Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism", ranks=[0]
|
|
|
|
)
|
|
|
|
elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE:
|
|
|
|
model = DDP(
|
|
|
|
model,
|
|
|
|
process_group=gpc.get_group(ParallelMode.DATA),
|
|
|
|
device_ids=[torch.cuda.current_device()],
|
|
|
|
**torch_ddp_cfg,
|
|
|
|
)
|
|
|
|
if verbose:
|
|
|
|
logger.info("Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism", ranks=[0])
|
|
|
|
elif is_using_ddp():
|
|
|
|
gradient_handler_cfg = [dict(type="DataParallelGradientHandler")]
|
|
|
|
if verbose:
|
|
|
|
logger.info(
|
|
|
|
"Data parallel training is detected when using pipeline parallel, "
|
|
|
|
"DataParallelGradientHandler is automatically "
|
|
|
|
"added even though not specified in the configuration",
|
|
|
|
ranks=[0],
|
|
|
|
)
|
|
|
|
# add pipeline parallel gradient handler, if pipeline shared module is detected
|
|
|
|
for param in model.parameters():
|
|
|
|
if getattr(param, "pipeline_shared_module_pg", None) is not None:
|
|
|
|
if gradient_handler_cfg is None:
|
|
|
|
gradient_handler_cfg = [dict(type="PipelineSharedModuleGradientHandler")]
|
|
|
|
else:
|
|
|
|
gradient_handler_cfg.append(dict(type="PipelineSharedModuleGradientHandler"))
|
|
|
|
if verbose:
|
|
|
|
logger.info(
|
|
|
|
"pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically "
|
|
|
|
"added even though not specified in the configuration",
|
|
|
|
ranks=[0],
|
|
|
|
)
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
if not isinstance(gradient_handler_cfg, list):
|
|
|
|
raise ConfigException(
|
|
|
|
f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}"
|
|
|
|
)
|
|
|
|
|
|
|
|
# turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time
|
|
|
|
# to avoid duplicated buffer synchronization
|
|
|
|
if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel):
|
|
|
|
model.module.sync_buffer = False
|
|
|
|
|
|
|
|
# initialize schedule for engine
|
|
|
|
if is_using_pp():
|
|
|
|
tensor_shape = get_tensor_shape()
|
|
|
|
use_interleaved = hasattr(gpc.config, "model") and hasattr(gpc.config.model, "num_chunks")
|
|
|
|
if gpc.is_initialized(ParallelMode.PARALLEL_1D):
|
|
|
|
scatter_gather = True
|
|
|
|
else:
|
|
|
|
scatter_gather = False
|
|
|
|
if use_interleaved:
|
|
|
|
if isinstance(model, nn.Sequential):
|
|
|
|
model = nn.ModuleList([model])
|
|
|
|
schedule = InterleavedPipelineSchedule(
|
|
|
|
gpc.config.NUM_MICRO_BATCHES,
|
|
|
|
gpc.config.model.num_chunks,
|
|
|
|
tensor_shape=tensor_shape,
|
|
|
|
scatter_gather_tensors=scatter_gather,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
schedule = PipelineSchedule(
|
|
|
|
gpc.config.NUM_MICRO_BATCHES, tensor_shape=tensor_shape, scatter_gather_tensors=scatter_gather
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
schedule = NonPipelineSchedule()
|
|
|
|
|
|
|
|
if gradient_handler_cfg is None:
|
|
|
|
gradient_handlers = None
|
|
|
|
if verbose and not isinstance(model, DDP):
|
|
|
|
logger.warning(
|
|
|
|
"No PyTorch DDP or gradient handler is set up, please make sure you do not need "
|
|
|
|
"to all-reduce the gradients after a training step.",
|
|
|
|
ranks=[0],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg]
|
|
|
|
|
|
|
|
# check if optimizer is OptimizerWrapper
|
|
|
|
if not isinstance(optimizer, (OptimizerWrapper, ShardedOptimizerV2)):
|
|
|
|
optimizer = OptimizerWrapper(optim=optimizer)
|
|
|
|
|
|
|
|
# gradient accumulation
|
|
|
|
grad_accum_size = gpc.config.get("gradient_accumulation", None)
|
|
|
|
if grad_accum_size is not None:
|
|
|
|
optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient(
|
|
|
|
model=model,
|
|
|
|
optimizer=optimizer,
|
|
|
|
dataloader=train_dataloader,
|
|
|
|
accumulate_size=grad_accum_size,
|
|
|
|
gradient_handlers=gradient_handlers,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
)
|
|
|
|
engine = Engine(
|
|
|
|
model=model,
|
|
|
|
optimizer=optimizer,
|
|
|
|
criterion=criterion,
|
|
|
|
gradient_handlers=gradient_handlers,
|
|
|
|
clip_grad_norm=clip_grad_norm,
|
|
|
|
ophook_list=ophooks,
|
|
|
|
schedule=schedule,
|
|
|
|
)
|
|
|
|
|
|
|
|
return engine, train_dataloader, test_dataloader, lr_scheduler
|