|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.context.singleton_meta import SingletonMeta
|
|
|
|
from colossalai.fx.profiler import calculate_fwd_out, calculate_fwd_tmp
|
|
|
|
|
|
|
|
from .region import Region
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class NodeInfo:
|
|
|
|
node_id: int = 0
|
|
|
|
runtime_fwd_mem: float = 0
|
|
|
|
runtime_bwd_mem: float = 0
|
|
|
|
|
|
|
|
|
|
|
|
class NvDevicePower:
|
|
|
|
"""
|
|
|
|
NVIDIA GPU computing performance (TFLOPs).
|
|
|
|
"""
|
|
|
|
|
|
|
|
RTX3080_FP16 = 70
|
|
|
|
RTX3080_FP32 = 34.1
|
|
|
|
|
|
|
|
RTX3090_FP16 = 71
|
|
|
|
RTX3090_FP32 = 35.7
|
|
|
|
|
|
|
|
V100_FP16 = 31.4
|
|
|
|
V100_FP32 = 15.7
|
|
|
|
|
|
|
|
A100_FP16 = 78
|
|
|
|
A100_FP32 = 19.5
|
|
|
|
|
|
|
|
|
|
|
|
class GlobalRuntimeInfo(metaclass=SingletonMeta):
|
|
|
|
def __init__(self):
|
|
|
|
self.h2d_stream = torch.cuda.Stream()
|
|
|
|
self.d2h_stream = torch.cuda.Stream()
|
|
|
|
self.fwd_prefetch_event_map = {}
|
|
|
|
self.bwd_prefetch_event_map = {}
|
|
|
|
self.region_list = []
|
|
|
|
|
|
|
|
|
|
|
|
def compute_act_peak_mem(region_list: List[Region]) -> float:
|
|
|
|
act_peak_mem = 0
|
|
|
|
runtime_mem = 0
|
|
|
|
# forward
|
|
|
|
for region in region_list:
|
|
|
|
for node in region.nodes:
|
|
|
|
runtime_mem = runtime_mem + calculate_fwd_tmp(node) + calculate_fwd_out(node)
|
|
|
|
act_peak_mem = max(runtime_mem, act_peak_mem)
|
|
|
|
# backward
|
|
|
|
bwd_deps = {}
|
|
|
|
for region in region_list.__reversed__():
|
|
|
|
for node in region.nodes.__reversed__():
|
|
|
|
runtime_mem -= calculate_fwd_out(node)
|
|
|
|
runtime_mem = runtime_mem + node.meta["bwd_mem_tmp"] + node.meta["bwd_mem_out"]
|
|
|
|
|
|
|
|
act_peak_mem = max(runtime_mem, act_peak_mem)
|
|
|
|
|
|
|
|
runtime_mem = runtime_mem - node.meta["bwd_mem_tmp"] - calculate_fwd_tmp(node)
|
|
|
|
|
|
|
|
# free bwd_mem_out
|
|
|
|
bwd_deps[node] = len(node.all_input_nodes)
|
|
|
|
for user_node in node.users:
|
|
|
|
if user_node in bwd_deps:
|
|
|
|
bwd_deps[user_node] -= 1
|
|
|
|
if bwd_deps[user_node] <= 0:
|
|
|
|
runtime_mem -= user_node.meta["bwd_mem_out"]
|
|
|
|
|
|
|
|
return act_peak_mem
|
|
|
|
|
|
|
|
|
|
|
|
def compute_max_param_mem(region_list: List[Region]) -> float:
|
|
|
|
return max(region.param_size for region in region_list)
|
|
|
|
|
|
|
|
|
|
|
|
def compute_total_param_mem(region_list: List[Region]) -> float:
|
|
|
|
return sum(region.param_size for region in region_list if region.r_id <= region.shared_rid)
|
|
|
|
|
|
|
|
|
|
|
|
def requires_upload_p_in_fwd(shared_reg: Region):
|
|
|
|
return (shared_reg.r_id >= shared_reg.shared_rid) or (
|
|
|
|
shared_reg.r_id < shared_reg.shared_rid and shared_reg.need_offload
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def requires_release_p_in_bwd(shared_reg: Region):
|
|
|
|
return (shared_reg.r_id >= shared_reg.shared_rid) or (
|
|
|
|
shared_reg.r_id < shared_reg.shared_rid and shared_reg.need_offload
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def requires_offload_g_in_bwd(region: Region):
|
|
|
|
return region.param_size and (region.r_id <= region.shared_rid)
|