mirror of https://github.com/THUDM/ChatGLM2-6B
218 lines
7.0 KiB
Python
218 lines
7.0 KiB
Python
# coding=utf-8
|
||
# Implements API for ChatGLM2-6B in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
|
||
# Usage: python openai_api.py
|
||
# Visit http://localhost:8000/docs for documents.
|
||
|
||
|
||
import time
|
||
import torch
|
||
import uvicorn
|
||
from pydantic import BaseModel, Field
|
||
from fastapi import FastAPI, HTTPException
|
||
from fastapi.middleware.cors import CORSMiddleware
|
||
from contextlib import asynccontextmanager
|
||
from typing import Any, Dict, List, Literal, Optional, Union
|
||
from transformers import AutoTokenizer, AutoModel, BertModel, BertTokenizer
|
||
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
|
||
|
||
|
||
@asynccontextmanager
|
||
async def lifespan(app: FastAPI): # collects GPU memory
|
||
yield
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
torch.cuda.ipc_collect()
|
||
|
||
|
||
app = FastAPI(lifespan=lifespan)
|
||
|
||
app.add_middleware(
|
||
CORSMiddleware,
|
||
allow_origins=["*"],
|
||
allow_credentials=True,
|
||
allow_methods=["*"],
|
||
allow_headers=["*"],
|
||
)
|
||
|
||
|
||
class ModelCard(BaseModel):
|
||
id: str
|
||
object: str = "model"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
owned_by: str = "owner"
|
||
root: Optional[str] = None
|
||
parent: Optional[str] = None
|
||
permission: Optional[list] = None
|
||
|
||
|
||
class ModelList(BaseModel):
|
||
object: str = "list"
|
||
data: List[ModelCard] = []
|
||
|
||
|
||
class ChatMessage(BaseModel):
|
||
role: Literal["user", "assistant", "system"]
|
||
content: str
|
||
|
||
|
||
class DeltaMessage(BaseModel):
|
||
role: Optional[Literal["user", "assistant", "system"]] = None
|
||
content: Optional[str] = None
|
||
|
||
|
||
class ChatCompletionRequest(BaseModel):
|
||
model: str
|
||
messages: List[ChatMessage]
|
||
temperature: Optional[float] = None
|
||
top_p: Optional[float] = None
|
||
max_length: Optional[int] = None
|
||
stream: Optional[bool] = False
|
||
|
||
|
||
class ChatCompletionResponseChoice(BaseModel):
|
||
index: int
|
||
message: ChatMessage
|
||
finish_reason: Literal["stop", "length"]
|
||
|
||
|
||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||
index: int
|
||
delta: DeltaMessage
|
||
finish_reason: Optional[Literal["stop", "length"]]
|
||
|
||
|
||
class ChatCompletionResponse(BaseModel):
|
||
model: str
|
||
object: Literal["chat.completion", "chat.completion.chunk"]
|
||
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
||
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||
|
||
|
||
@app.get("/v1/models", response_model=ModelList)
|
||
async def list_models():
|
||
global model_args
|
||
model_card = ModelCard(id="gpt-3.5-turbo")
|
||
return ModelList(data=[model_card])
|
||
|
||
|
||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||
async def create_chat_completion(request: ChatCompletionRequest):
|
||
global model, tokenizer
|
||
|
||
if request.messages[-1].role != "user":
|
||
raise HTTPException(status_code=400, detail="Invalid request")
|
||
query = request.messages[-1].content
|
||
|
||
prev_messages = request.messages[:-1]
|
||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||
query = prev_messages.pop(0).content + query
|
||
|
||
history = []
|
||
if len(prev_messages) % 2 == 0:
|
||
for i in range(0, len(prev_messages), 2):
|
||
if prev_messages[i].role == "user" and prev_messages[i + 1].role == "assistant":
|
||
history.append([prev_messages[i].content, prev_messages[i + 1].content])
|
||
|
||
if request.stream:
|
||
generate = predict(query, history, request.model)
|
||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||
|
||
response, _ = model.chat(tokenizer, query, history=history)
|
||
choice_data = ChatCompletionResponseChoice(
|
||
index=0,
|
||
message=ChatMessage(role="assistant", content=response),
|
||
finish_reason="stop"
|
||
)
|
||
|
||
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
|
||
|
||
|
||
async def predict(query: str, history: List[List[str]], model_id: str):
|
||
global model, tokenizer
|
||
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=DeltaMessage(role="assistant"),
|
||
finish_reason=None
|
||
)
|
||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||
|
||
current_length = 0
|
||
|
||
for new_response, _ in model.stream_chat(tokenizer, query, history):
|
||
if len(new_response) == current_length:
|
||
continue
|
||
|
||
new_text = new_response[current_length:]
|
||
current_length = len(new_response)
|
||
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=DeltaMessage(content=new_text),
|
||
finish_reason=None
|
||
)
|
||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=DeltaMessage(),
|
||
finish_reason="stop"
|
||
)
|
||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||
yield '[DONE]'
|
||
|
||
|
||
class EmbeddingsRequest(BaseModel):
|
||
model: str
|
||
input: Union[str, List[str]]
|
||
|
||
|
||
class EmbeddingsData(BaseModel):
|
||
object: str = "embedding"
|
||
embedding: List[float]
|
||
index: int = 0
|
||
|
||
|
||
class EmbeddingsResponse(BaseModel):
|
||
object: str = "list"
|
||
data: List[EmbeddingsData]
|
||
model: str
|
||
usage: dict
|
||
|
||
|
||
@app.post("/v1/embeddings", response_model=EmbeddingsResponse)
|
||
async def create_chat_completion(request: EmbeddingsRequest):
|
||
global bert_model, bert_tokenizer
|
||
encoded_input = bert_tokenizer(request.input, padding=True, truncation=True, return_tensors='pt')
|
||
with torch.no_grad():
|
||
model_output = bert_model(**encoded_input)
|
||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||
return EmbeddingsResponse(
|
||
data=[EmbeddingsData(embedding=_.tolist(), index=i) for i, _ in enumerate(sentence_embeddings)],
|
||
model=request.model,
|
||
usage={},
|
||
)
|
||
|
||
|
||
def mean_pooling(model_output, attention_mask):
|
||
token_embeddings = model_output[0]
|
||
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
||
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
||
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).cuda()
|
||
# 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量
|
||
# from utils import load_model_on_gpus
|
||
# model = load_model_on_gpus("THUDM/chatglm2-6b", num_gpus=2)
|
||
model.eval()
|
||
bert_name = 'GanymedeNil/text2vec-large-chinese'
|
||
bert_model = BertModel.from_pretrained(bert_name)
|
||
bert_tokenizer = BertTokenizer.from_pretrained(bert_name, model_max_length=512)
|
||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
||
|