mirror of https://github.com/THUDM/ChatGLM2-6B
721 lines
31 KiB
Python
721 lines
31 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for sequence to sequence for P-Tuning v2
|
|
"""
|
|
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
|
|
|
# CUDA_VISIBLE_DEVICES=-1 python finetune-p-tuning-v2.py
|
|
# accelerate launch --cpu --num_machines=1 --num_processes=4 --num_cpu_threads_per_process=1 finetune-p-tuning-v2.py
|
|
# accelerate launch --num_machines=1 --num_processes=1 --gpu_ids=1 finetune-p-tuning-v2.py
|
|
|
|
|
|
# import logging
|
|
import os
|
|
import sys
|
|
import json
|
|
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
import jieba
|
|
from rouge_chinese import Rouge
|
|
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
|
import torch
|
|
|
|
# import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModel,
|
|
AutoTokenizer,
|
|
DataCollatorForSeq2Seq,
|
|
# HfArgumentParser,
|
|
# Seq2SeqTrainingArguments,
|
|
# set_seed,
|
|
)
|
|
|
|
# from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
# import torch
|
|
# from torch import nn
|
|
# from torch.utils.data import Dataset
|
|
|
|
# from transformers.deepspeed import is_deepspeed_zero3_enabled
|
|
# from trainer import PrefixTrainer
|
|
# from transformers.trainer_utils import PredictionOutput
|
|
# from transformers.utils import logging
|
|
|
|
# import os
|
|
# from typing import Optional
|
|
from transformers import Trainer
|
|
|
|
# import torch
|
|
# from transformers.modeling_utils import PreTrainedModel, unwrap_model
|
|
# from transformers.utils import logging
|
|
|
|
# from trainer_seq2seq import Seq2SeqTrainer
|
|
|
|
# from arguments import ModelArguments, DataTrainingArguments
|
|
|
|
# logger = logging.getLogger(__name__)
|
|
# logger.setLevel(logging.INFO)
|
|
|
|
def main():
|
|
# print(torch.backends.mps.is_available())
|
|
# print(torch.backends.mps.is_built())
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda")
|
|
elif torch.backends.mps.is_available():
|
|
device = torch.device("mps")
|
|
else:
|
|
device = torch.device("cpu")
|
|
print("device:", device)
|
|
# parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
|
# if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# # If we pass only one argument to the script and it's the path to a json file,
|
|
# # let's parse it to get our arguments.
|
|
# model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
# else:
|
|
# model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Setup logging
|
|
# logging.basicConfig(
|
|
# format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
# datefmt="%m/%d/%Y %H:%M:%S",
|
|
# handlers=[logging.StreamHandler(sys.stdout)],
|
|
# )
|
|
|
|
# if training_args.should_log:
|
|
# # The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
# transformers.utils.logging.set_verbosity_info()
|
|
|
|
# log_level = training_args.get_process_log_level()
|
|
# logger.setLevel(log_level)
|
|
# datasets.utils.logging.set_verbosity(log_level)
|
|
# transformers.utils.logging.set_verbosity(log_level)
|
|
# transformers.utils.logging.enable_default_handler()
|
|
# transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
# logger.warning(
|
|
# f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
|
# + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
# )
|
|
# logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Set seed before initializing model.
|
|
# set_seed(training_args.seed)
|
|
|
|
# Load dataset
|
|
data_files_path = "/tmp/hub/dataset/shibing624/AdvertiseGen"
|
|
print('data_files_path:', data_files_path)
|
|
data_files = {}
|
|
data_files["train"] = "train.json"
|
|
data_files["validation"] = "dev.json"
|
|
# data_files["test"] = "test.json"
|
|
print('data_files:', data_files)
|
|
raw_datasets = load_dataset(data_files_path, data_files=data_files)
|
|
print("raw_datasets:", raw_datasets)
|
|
|
|
# Load pretrained model and tokenizer
|
|
model_name_or_path = '/tmp/hub/chatglm2-6b'
|
|
print('model_name_or_path', model_name_or_path)
|
|
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
|
print('load autoconfig done')
|
|
# soft prompt 长度
|
|
PRE_SEQ_LEN=128
|
|
config.pre_seq_len = PRE_SEQ_LEN
|
|
config.prefix_projection = False
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
|
print('load AutoTokenizer done')
|
|
|
|
# if model_args.ptuning_checkpoint is not None:
|
|
# # Evaluation
|
|
# # Loading extra state dict of prefix encoder
|
|
# model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
|
|
# prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
|
|
# new_prefix_state_dict = {}
|
|
# for k, v in prefix_state_dict.items():
|
|
# if k.startswith("transformer.prefix_encoder."):
|
|
# new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
|
# model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
|
# else:
|
|
# model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
|
|
|
|
model = AutoModel.from_pretrained(model_name_or_path, config=config, trust_remote_code=True)
|
|
#print('load AutoModel done')
|
|
# model = model.quantize(4)
|
|
|
|
# if model_args.quantization_bit is not None:
|
|
# print(f"Quantized to {model_args.quantization_bit} bit")
|
|
# model = model.quantize(model_args.quantization_bit)
|
|
# if model_args.pre_seq_len is not None:
|
|
# # P-tuning v2
|
|
# model = model.half()
|
|
# model.transformer.prefix_encoder.float()
|
|
# else:
|
|
# # Finetune
|
|
# model = model.float()
|
|
|
|
# P-tuning v2, do not work for accelerate
|
|
model = model.half()
|
|
model.transformer.prefix_encoder.float()
|
|
|
|
# finetune, work for accelerate
|
|
# model = model.float()
|
|
|
|
print('model half done')
|
|
|
|
prefix = ""
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to tokenize inputs and targets.
|
|
# if training_args.do_train:
|
|
# column_names = raw_datasets["train"].column_names
|
|
# elif training_args.do_eval:
|
|
# column_names = raw_datasets["validation"].column_names
|
|
# elif training_args.do_predict:
|
|
# column_names = raw_datasets["test"].column_names
|
|
# else:
|
|
# logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
|
# return
|
|
column_names = raw_datasets["train"].column_names
|
|
|
|
# Get the column names for input/target.
|
|
prompt_column = 'content'
|
|
response_column = 'summary'
|
|
history_column = None
|
|
|
|
# Temporarily set max_target_length for training.
|
|
max_source_length = 64
|
|
max_target_length = 128
|
|
ignore_pad_token_for_loss = True
|
|
|
|
def preprocess_function_eval(examples):
|
|
inputs, targets = [], []
|
|
for i in range(len(examples[prompt_column])):
|
|
if examples[prompt_column][i] and examples[response_column][i]:
|
|
query = examples[prompt_column][i]
|
|
history = examples[history_column][i] if history_column is not None else None
|
|
prompt = tokenizer.build_prompt(query, history)
|
|
inputs.append(prompt)
|
|
targets.append(examples[response_column][i])
|
|
|
|
inputs = [prefix + inp for inp in inputs]
|
|
model_inputs = tokenizer(inputs, max_length=max_source_length, truncation=True, padding=True)
|
|
labels = tokenizer(text_target=targets, max_length=max_target_length, truncation=True)
|
|
|
|
if ignore_pad_token_for_loss:
|
|
labels["input_ids"] = [[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]]
|
|
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
return model_inputs
|
|
|
|
def preprocess_function_train(examples):
|
|
max_seq_length = max_source_length + max_target_length + 1
|
|
model_inputs = { "input_ids": [], "labels": [] }
|
|
for i in range(len(examples[prompt_column])):
|
|
if examples[prompt_column][i] and examples[response_column][i]:
|
|
query, answer = examples[prompt_column][i], examples[response_column][i]
|
|
|
|
history = examples[history_column][i] if history_column is not None else None
|
|
prompt = tokenizer.build_prompt(query, history)
|
|
|
|
prompt = prefix + prompt
|
|
a_ids = tokenizer.encode(text=prompt, add_special_tokens=True, truncation=True, max_length=max_source_length)
|
|
b_ids = tokenizer.encode(text=answer, add_special_tokens=False, truncation=True, max_length=max_target_length)
|
|
|
|
context_length = len(a_ids)
|
|
input_ids = a_ids + b_ids + [tokenizer.eos_token_id]
|
|
labels = [tokenizer.pad_token_id] * context_length + b_ids + [tokenizer.eos_token_id]
|
|
|
|
pad_len = max_seq_length - len(input_ids)
|
|
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
|
|
labels = labels + [tokenizer.pad_token_id] * pad_len
|
|
if ignore_pad_token_for_loss:
|
|
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]
|
|
|
|
model_inputs["input_ids"].append(input_ids)
|
|
model_inputs["labels"].append(labels)
|
|
|
|
return model_inputs
|
|
|
|
def print_dataset_example(example):
|
|
print('******************* print_dataset_example ******************************')
|
|
print("input_ids:", example["input_ids"])
|
|
print("inputs:", tokenizer.decode(example["input_ids"]))
|
|
print("label_ids:", example["labels"])
|
|
print("labels:", tokenizer.decode(example["labels"]))
|
|
|
|
max_train_samples = 5
|
|
do_train = True
|
|
if do_train:
|
|
train_dataset = raw_datasets["train"]
|
|
max_train_samples = min(len(train_dataset), max_train_samples)
|
|
train_dataset = train_dataset.select(range(max_train_samples))
|
|
train_dataset = train_dataset.map(
|
|
preprocess_function_train,
|
|
batched=True,
|
|
num_proc=5,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=False,
|
|
desc="Running tokenizer on train dataset",
|
|
)
|
|
# print_dataset_example(train_dataset[0])
|
|
|
|
max_eval_samples = 5
|
|
do_eval = True
|
|
if do_eval:
|
|
eval_dataset = raw_datasets["validation"]
|
|
max_eval_samples = min(len(eval_dataset), max_eval_samples)
|
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
|
eval_dataset = eval_dataset.map(
|
|
preprocess_function_eval,
|
|
batched=True,
|
|
num_proc=5,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=False,
|
|
desc="Running tokenizer on validation dataset",
|
|
)
|
|
# print_dataset_example(eval_dataset[0])
|
|
|
|
# if training_args.do_predict:
|
|
# max_target_length = data_args.val_max_target_length
|
|
# if "test" not in raw_datasets:
|
|
# raise ValueError("--do_predict requires a test dataset")
|
|
# predict_dataset = raw_datasets["test"]
|
|
# if data_args.max_predict_samples is not None:
|
|
# max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
|
# predict_dataset = predict_dataset.select(range(max_predict_samples))
|
|
# with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
|
# predict_dataset = predict_dataset.map(
|
|
# preprocess_function_eval,
|
|
# batched=True,
|
|
# num_proc=data_args.preprocessing_num_workers,
|
|
# remove_columns=column_names,
|
|
# load_from_cache_file=not data_args.overwrite_cache,
|
|
# desc="Running tokenizer on prediction dataset",
|
|
# )
|
|
# print_dataset_example(predict_dataset[0])
|
|
|
|
# Data collator
|
|
label_pad_token_id = -100 if ignore_pad_token_for_loss else tokenizer.pad_token_id
|
|
data_collator = DataCollatorForSeq2Seq(
|
|
tokenizer,
|
|
model=model,
|
|
label_pad_token_id=label_pad_token_id,
|
|
pad_to_multiple_of=None,
|
|
padding=False
|
|
)
|
|
print("data_collator done")
|
|
|
|
# Metric
|
|
def compute_metrics(eval_preds):
|
|
preds, labels = eval_preds
|
|
if isinstance(preds, tuple):
|
|
preds = preds[0]
|
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
|
if ignore_pad_token_for_loss:
|
|
# Replace -100 in the labels as we can't decode them.
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
|
|
|
score_dict = {
|
|
"rouge-1": [],
|
|
"rouge-2": [],
|
|
"rouge-l": [],
|
|
"bleu-4": []
|
|
}
|
|
for pred, label in zip(decoded_preds, decoded_labels):
|
|
hypothesis = list(jieba.cut(pred))
|
|
reference = list(jieba.cut(label))
|
|
rouge = Rouge()
|
|
scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference))
|
|
result = scores[0]
|
|
|
|
for k, v in result.items():
|
|
score_dict[k].append(round(v["f"] * 100, 4))
|
|
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
|
|
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
|
|
|
for k, v in score_dict.items():
|
|
score_dict[k] = float(np.mean(v))
|
|
return score_dict
|
|
|
|
# Override the decoding parameters of Seq2SeqTrainer
|
|
# training_args.generation_max_length = (
|
|
# training_args.generation_max_length
|
|
# if training_args.generation_max_length is not None
|
|
# else data_args.val_max_target_length
|
|
# )
|
|
# training_args.generation_num_beams = (
|
|
# data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
|
|
# )
|
|
|
|
# Initialize our Trainer
|
|
# trainer = Seq2SeqTrainer(
|
|
# model=model,
|
|
# # args=training_args,
|
|
# train_dataset=train_dataset,
|
|
# eval_dataset=eval_dataset,
|
|
# tokenizer=tokenizer,
|
|
# data_collator=data_collator,
|
|
# compute_metrics=compute_metrics,
|
|
# save_changed=PRE_SEQ_LEN is not None
|
|
# )
|
|
|
|
trainer = Trainer(
|
|
model,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
compute_metrics=compute_metrics,
|
|
)
|
|
print('build trainer done')
|
|
|
|
# Training
|
|
if do_train:
|
|
# checkpoint = False
|
|
# if training_args.resume_from_checkpoint is not None:
|
|
# checkpoint = training_args.resume_from_checkpoint
|
|
# elif last_checkpoint is not None:
|
|
# checkpoint = last_checkpoint
|
|
model.gradient_checkpointing_enable()
|
|
model.enable_input_require_grads()
|
|
print("begin trainning")
|
|
# train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
train_result = trainer.train()
|
|
# trainer.save_model() # Saves the tokenizer too for easy upload
|
|
print("done trainning")
|
|
metrics = train_result.metrics
|
|
max_train_samples = len(train_dataset)
|
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
print("save state")
|
|
# trainer.save_model("tmp_trainer/ptuning")
|
|
print("save model")
|
|
|
|
# # Evaluation
|
|
# results = {}
|
|
# max_seq_length = data_args.max_source_length + data_args.max_target_length + 1
|
|
# if training_args.do_eval:
|
|
# logger.info("*** Evaluate ***")
|
|
# metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=max_seq_length, temperature=0.95)
|
|
# max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
|
# metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
|
|
|
# trainer.log_metrics("eval", metrics)
|
|
# trainer.save_metrics("eval", metrics)
|
|
|
|
# if training_args.do_predict:
|
|
# logger.info("*** Predict ***")
|
|
# predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=max_seq_length, do_sample=True, top_p=0.7, temperature=0.95)
|
|
# metrics = predict_results.metrics
|
|
# max_predict_samples = (
|
|
# data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
|
|
# )
|
|
# metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
|
|
|
|
# trainer.log_metrics("predict", metrics)
|
|
# trainer.save_metrics("predict", metrics)
|
|
|
|
# if trainer.is_world_process_zero():
|
|
# if training_args.predict_with_generate:
|
|
# predictions = tokenizer.batch_decode(
|
|
# predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
# )
|
|
# predictions = [pred.strip() for pred in predictions]
|
|
# labels = tokenizer.batch_decode(
|
|
# predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
# )
|
|
# labels = [label.strip() for label in labels]
|
|
# output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
|
|
# with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
|
# for p, l in zip(predictions, labels):
|
|
# res = json.dumps({"labels": l, "predict": p}, ensure_ascii=False)
|
|
# writer.write(f"{res}\n")
|
|
# return results
|
|
|
|
# WEIGHTS_NAME = "pytorch_model.bin"
|
|
# TRAINING_ARGS_NAME = "training_args.bin"
|
|
|
|
# class PrefixTrainer(Trainer):
|
|
# def __init__(self, *args, save_changed=False, **kwargs):
|
|
# self.save_changed = save_changed
|
|
# super().__init__(*args, **kwargs)
|
|
|
|
# def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
|
# # If we are executing this function, we are the process zero, so we don't check for that.
|
|
# output_dir = output_dir if output_dir is not None else self.args.output_dir
|
|
# os.makedirs(output_dir, exist_ok=True)
|
|
# logger.info(f"Saving model checkpoint to {output_dir}")
|
|
# # Save a trained model and configuration using `save_pretrained()`.
|
|
# # They can then be reloaded using `from_pretrained()`
|
|
# if not isinstance(self.model, PreTrainedModel):
|
|
# if isinstance(unwrap_model(self.model), PreTrainedModel):
|
|
# if state_dict is None:
|
|
# state_dict = self.model.state_dict()
|
|
# unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
|
|
# else:
|
|
# logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
|
|
# if state_dict is None:
|
|
# state_dict = self.model.state_dict()
|
|
# torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
|
|
# else:
|
|
# if self.save_changed:
|
|
# print("Saving PrefixEncoder")
|
|
# state_dict = self.model.state_dict()
|
|
# filtered_state_dict = {}
|
|
# for k, v in self.model.named_parameters():
|
|
# if v.requires_grad:
|
|
# filtered_state_dict[k] = state_dict[k]
|
|
# self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
|
|
# else:
|
|
# print("Saving the whole model")
|
|
# self.model.save_pretrained(output_dir, state_dict=state_dict)
|
|
# if self.tokenizer is not None:
|
|
# self.tokenizer.save_pretrained(output_dir)
|
|
|
|
# # Good practice: save your training arguments together with the trained model
|
|
# torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
|
|
|
|
# class Seq2SeqTrainer(PrefixTrainer):
|
|
# def evaluate(
|
|
# self,
|
|
# eval_dataset: Optional[Dataset] = None,
|
|
# ignore_keys: Optional[List[str]] = None,
|
|
# metric_key_prefix: str = "eval",
|
|
# **gen_kwargs
|
|
# ) -> Dict[str, float]:
|
|
# """
|
|
# Run evaluation and returns metrics.
|
|
|
|
# The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
|
|
# (pass it to the init `compute_metrics` argument).
|
|
|
|
# You can also subclass and override this method to inject custom behavior.
|
|
|
|
# Args:
|
|
# eval_dataset (`Dataset`, *optional*):
|
|
# Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns
|
|
# not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
|
|
# method.
|
|
# ignore_keys (`List[str]`, *optional*):
|
|
# A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
|
# gathering predictions.
|
|
# metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
|
# An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
|
# "eval_bleu" if the prefix is `"eval"` (default)
|
|
# max_length (`int`, *optional*):
|
|
# The maximum target length to use when predicting with the generate method.
|
|
# num_beams (`int`, *optional*):
|
|
# Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
|
# beam search.
|
|
# gen_kwargs:
|
|
# Additional `generate` specific kwargs.
|
|
|
|
# Returns:
|
|
# A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
|
|
# dictionary also contains the epoch number which comes from the training state.
|
|
# """
|
|
|
|
# gen_kwargs = gen_kwargs.copy()
|
|
# if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
|
# gen_kwargs["max_length"] = self.args.generation_max_length
|
|
# gen_kwargs["num_beams"] = (
|
|
# gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
|
# )
|
|
# self._gen_kwargs = gen_kwargs
|
|
|
|
# return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
|
|
|
# def predict(
|
|
# self,
|
|
# test_dataset: Dataset,
|
|
# ignore_keys: Optional[List[str]] = None,
|
|
# metric_key_prefix: str = "test",
|
|
# **gen_kwargs
|
|
# ) -> PredictionOutput:
|
|
# """
|
|
# Run prediction and returns predictions and potential metrics.
|
|
|
|
# Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
|
|
# will also return metrics, like in `evaluate()`.
|
|
|
|
# Args:
|
|
# test_dataset (`Dataset`):
|
|
# Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the
|
|
# `model.forward()` method are automatically removed. Has to implement the method `__len__`
|
|
# ignore_keys (`List[str]`, *optional*):
|
|
# A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
|
# gathering predictions.
|
|
# metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
|
# An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
|
# "eval_bleu" if the prefix is `"eval"` (default)
|
|
# max_length (`int`, *optional*):
|
|
# The maximum target length to use when predicting with the generate method.
|
|
# num_beams (`int`, *optional*):
|
|
# Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
|
# beam search.
|
|
# gen_kwargs:
|
|
# Additional `generate` specific kwargs.
|
|
|
|
# <Tip>
|
|
|
|
# If your predictions or labels have different sequence lengths (for instance because you're doing dynamic
|
|
# padding in a token classification task) the predictions will be padded (on the right) to allow for
|
|
# concatenation into one array. The padding index is -100.
|
|
|
|
# </Tip>
|
|
|
|
# Returns: *NamedTuple* A namedtuple with the following keys:
|
|
|
|
# - predictions (`np.ndarray`): The predictions on `test_dataset`.
|
|
# - label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
|
|
# - metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
|
|
# labels).
|
|
# """
|
|
|
|
# gen_kwargs = gen_kwargs.copy()
|
|
# if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
|
# gen_kwargs["max_length"] = self.args.generation_max_length
|
|
# gen_kwargs["num_beams"] = (
|
|
# gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
|
# )
|
|
# self._gen_kwargs = gen_kwargs
|
|
|
|
|
|
# return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
|
|
|
# def prediction_step(
|
|
# self,
|
|
# model: nn.Module,
|
|
# inputs: Dict[str, Union[torch.Tensor, Any]],
|
|
# prediction_loss_only: bool,
|
|
# ignore_keys: Optional[List[str]] = None,
|
|
# ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
|
# """
|
|
# Perform an evaluation step on `model` using `inputs`.
|
|
|
|
# Subclass and override to inject custom behavior.
|
|
|
|
# Args:
|
|
# model (`nn.Module`):
|
|
# The model to evaluate.
|
|
# inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
|
# The inputs and targets of the model.
|
|
|
|
# The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
|
# argument `labels`. Check your model's documentation for all accepted arguments.
|
|
# prediction_loss_only (`bool`):
|
|
# Whether or not to return the loss only.
|
|
|
|
# Return:
|
|
# Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
|
|
# labels (each being optional).
|
|
# """
|
|
|
|
# if not self.args.predict_with_generate or prediction_loss_only:
|
|
# return super().prediction_step(
|
|
# model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
|
# )
|
|
|
|
# has_labels = "labels" in inputs
|
|
# inputs = self._prepare_inputs(inputs)
|
|
|
|
# # XXX: adapt synced_gpus for fairscale as well
|
|
# gen_kwargs = self._gen_kwargs.copy()
|
|
# if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
|
# gen_kwargs["max_length"] = self.model.config.max_length
|
|
# gen_kwargs["num_beams"] = (
|
|
# gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
|
|
# )
|
|
# default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
|
|
# gen_kwargs["synced_gpus"] = (
|
|
# gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
|
|
# )
|
|
|
|
# if "attention_mask" in inputs:
|
|
# gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
|
|
# if "position_ids" in inputs:
|
|
# gen_kwargs["position_ids"] = inputs.get("position_ids", None)
|
|
# if "global_attention_mask" in inputs:
|
|
# gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)
|
|
|
|
# # prepare generation inputs
|
|
# # some encoder-decoder models can have varying encoder's and thus
|
|
# # varying model input names
|
|
# if hasattr(self.model, "encoder") and self.model.encoder.main_input_name != self.model.main_input_name:
|
|
# generation_inputs = inputs[self.model.encoder.main_input_name]
|
|
# else:
|
|
# generation_inputs = inputs[self.model.main_input_name]
|
|
|
|
# gen_kwargs["input_ids"] = generation_inputs
|
|
# generated_tokens = self.model.generate(**gen_kwargs)
|
|
# generated_tokens = generated_tokens[:, generation_inputs.size()[-1]:]
|
|
|
|
# # in case the batch is shorter than max length, the output should be padded
|
|
# if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]:
|
|
# generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
|
|
# elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < (
|
|
# gen_kwargs["max_new_tokens"] + 1
|
|
# ):
|
|
# generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)
|
|
|
|
# loss = None
|
|
|
|
# if self.args.prediction_loss_only:
|
|
# return (loss, None, None)
|
|
|
|
# if has_labels:
|
|
# labels = inputs["labels"]
|
|
# if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]:
|
|
# labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
|
|
# elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < (
|
|
# gen_kwargs["max_new_tokens"] + 1
|
|
# ):
|
|
# labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1))
|
|
# else:
|
|
# labels = None
|
|
|
|
# return (loss, generated_tokens, labels)
|
|
|
|
# def _pad_tensors_to_max_len(self, tensor, max_length):
|
|
# if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
|
|
# # If PAD token is not defined at least EOS token has to be defined
|
|
# pad_token_id = (
|
|
# self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
|
|
# )
|
|
# else:
|
|
# if self.model.config.pad_token_id is not None:
|
|
# pad_token_id = self.model.config.pad_token_id
|
|
# else:
|
|
# raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
|
|
|
|
# padded_tensor = pad_token_id * torch.ones(
|
|
# (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
|
|
# )
|
|
# padded_tensor[:, : tensor.shape[-1]] = tensor
|
|
# return padded_tensor
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|