You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ChatGLM2-6B/web_demo2.py

77 lines
2.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

from transformers import AutoModel, AutoTokenizer
import streamlit as st
from streamlit_chat import message
st.set_page_config(
page_title="ChatGLM2-6b 演示",
page_icon=":robot:",
layout='wide'
)
@st.cache_resource
def get_model():
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).cuda()
# 多显卡支持使用下面三行代替上面两行将num_gpus改为你实际的显卡数量
# model_path = "THUDM/chatglm2-6b"
# tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# model = load_model_on_gpus(model_path, num_gpus=2)
model = model.eval()
return tokenizer, model
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2
def predict(input, max_length, top_p, temperature, history=None):
tokenizer, model = get_model()
if history is None:
history = []
with container:
if len(history) > 0:
if len(history)>MAX_BOXES:
history = history[-MAX_TURNS:]
for i, (query, response) in enumerate(history):
message(query, avatar_style="big-smile", key=str(i) + "_user")
message(response, avatar_style="bottts", key=str(i))
message(input, avatar_style="big-smile", key=str(len(history)) + "_user")
st.write("AI正在回复:")
with st.empty():
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
temperature=temperature):
query, response = history[-1]
st.write(response)
return history
container = st.container()
# create a prompt text for the text generation
prompt_text = st.text_area(label="用户命令输入",
height = 100,
placeholder="请在这儿输入您的命令")
max_length = st.sidebar.slider(
'max_length', 0, 32768, 8192, step=1
)
top_p = st.sidebar.slider(
'top_p', 0.0, 1.0, 0.8, step=0.01
)
temperature = st.sidebar.slider(
'temperature', 0.0, 1.0, 0.95, step=0.01
)
if 'state' not in st.session_state:
st.session_state['state'] = []
if st.button("发送", key="predict"):
with st.spinner("AI正在思考请稍等........"):
# text generation
st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"])