mirror of https://github.com/THUDM/ChatGLM2-6B
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
60 lines
2.5 KiB
60 lines
2.5 KiB
import os |
|
import glob |
|
import re |
|
import json |
|
import torch |
|
import torch.utils.data |
|
from transformers import AutoTokenizer, AutoModel |
|
from tqdm import tqdm |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).bfloat16().cuda() |
|
|
|
choices = ["A", "B", "C", "D"] |
|
choice_tokens = [tokenizer.encode(choice, add_special_tokens=False)[0] for choice in choices] |
|
|
|
|
|
def build_prompt(text): |
|
return "[Round {}]\n\n问:{}\n\n答:".format(1, text) |
|
|
|
|
|
extraction_prompt = '综上所述,ABCD中正确的选项是:' |
|
|
|
accuracy_dict, count_dict = {}, {} |
|
with torch.no_grad(): |
|
for entry in glob.glob("./CEval/val/**/*.jsonl", recursive=True): |
|
dataset = [] |
|
with open(entry, encoding='utf-8') as file: |
|
for line in file: |
|
dataset.append(json.loads(line)) |
|
correct = 0 |
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) |
|
for batch in tqdm(dataloader): |
|
texts = batch["inputs_pretokenized"] |
|
queries = [build_prompt(query) for query in texts] |
|
inputs = tokenizer(queries, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda') |
|
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=512) |
|
intermediate_outputs = [] |
|
for idx in range(len(outputs)): |
|
output = outputs.tolist()[idx][len(inputs["input_ids"][idx]):] |
|
response = tokenizer.decode(output) |
|
intermediate_outputs.append(response) |
|
answer_texts = [text + intermediate + "\n" + extraction_prompt for text, intermediate in |
|
zip(texts, intermediate_outputs)] |
|
input_tokens = [build_prompt(answer_text) for answer_text in answer_texts] |
|
inputs = tokenizer(input_tokens, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda') |
|
outputs = model(**inputs, return_last_logit=True) |
|
logits = outputs.logits[:, -1] |
|
logits = logits[:, choice_tokens] |
|
preds = logits.argmax(dim=-1) |
|
correct += (preds.cpu() == batch["label"]).sum().item() |
|
accuracy = correct / len(dataset) |
|
print(entry, accuracy) |
|
accuracy_dict[entry] = accuracy |
|
count_dict[entry] = len(dataset) |
|
|
|
acc_total, count_total = 0.0, 0 |
|
for key in accuracy_dict: |
|
acc_total += accuracy_dict[key] * count_dict[key] |
|
count_total += count_dict[key] |
|
print(acc_total / count_total) |