from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch device = torch.device("cpu") checkpoint = "/Users/hhwang/models/t5-small" checkpoint = "/Users/hhwang/models/flan-t5-small" print('********* case 1 ***********') # tokenizer = AutoTokenizer.from_pretrained(checkpoint) # model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) # # print(model.config) # inputs = tokenizer.encode("translate English to German: That is good", return_tensors="pt") # outputs = model.generate(inputs, max_new_tokens=20) # print('result: ',tokenizer.batch_decode(outputs)) print('********* case 2 ***********') from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) prompt = "translate English to German: That is good?" generator = pipeline("summarization", model=model, tokenizer=tokenizer) print(generator(prompt))