mirror of https://github.com/THUDM/ChatGLM2-6B
add finetune file
parent
fe24caa129
commit
e4d57691d5
|
@ -0,0 +1,52 @@
|
|||
# https://github.com/jesusoctavioas/Finetune_opt_bnb_peft
|
||||
|
||||
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
||||
import torch
|
||||
|
||||
# import os
|
||||
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
device = torch.device("cpu")
|
||||
print("device:", device)
|
||||
|
||||
checkpoint = "/Users/hhwang/models/opt-125m"
|
||||
checkpoint = "/Users/hhwang/models/opt-350m"
|
||||
# checkpoint = "/Users/hhwang/models/gpt2"
|
||||
|
||||
print('checkpoint:', checkpoint)
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=False)
|
||||
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
||||
# model = AutoModelForCausalLM.from_pretrained(checkpoint, load_in_8bit=True, device_map='auto')
|
||||
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
||||
|
||||
batch = tokenizer("Two things are infinite: ", return_tensors='pt')
|
||||
output_tokens = model.generate(**batch, max_new_tokens=50)
|
||||
print('result:', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
|
||||
|
||||
from datasets import load_dataset
|
||||
# data = load_dataset("Abirate/english_quotes")
|
||||
dataset = load_dataset("/Users/hhwang/models/dataset/english_quotes")
|
||||
print('dataset', dataset)
|
||||
dataset = dataset.map(lambda samples: tokenizer(samples['quote']), batched=True)
|
||||
train_ds = dataset['train'].select(range(100))
|
||||
print('train_ds', train_ds)
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
train_dataset=train_ds,
|
||||
args=TrainingArguments(
|
||||
per_device_train_batch_size=4,
|
||||
gradient_accumulation_steps=4,
|
||||
warmup_steps=2,
|
||||
max_steps=10,
|
||||
learning_rate=2e-4,
|
||||
# fp16=True, # only works on cuda
|
||||
logging_steps=1,
|
||||
output_dir='outputs'
|
||||
),
|
||||
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
||||
)
|
||||
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
||||
print('begin train')
|
||||
trainer.train()
|
||||
print('done train')
|
|
@ -0,0 +1,75 @@
|
|||
|
||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
||||
from transformers import pipeline
|
||||
|
||||
checkpoint = "bigscience/mt0-large"
|
||||
checkpoint = "/Users/hhwang/models/gpt2"
|
||||
checkpoint = "/Users/hhwang/models/opt-125m"
|
||||
checkpoint = "/Users/hhwang/models/opt-350m"
|
||||
|
||||
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
||||
# inputs = tokenizer.encode("Write a short story", return_tensors="pt")
|
||||
# outputs = model.generate(inputs)
|
||||
# print(tokenizer.decode(outputs[0]))
|
||||
|
||||
# case 1
|
||||
# pipe = pipeline(task='text-generation', model=checkpoint)
|
||||
# print(pipe)
|
||||
# result = pipe("tell me a joke")
|
||||
# print('result: ',result)
|
||||
|
||||
# case 2
|
||||
# from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
||||
# tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
|
||||
# model = GPT2LMHeadModel.from_pretrained(checkpoint)
|
||||
# text = "Replace me by any text you'd like."
|
||||
# encoded_input = tokenizer.encode(text, return_tensors='pt')
|
||||
# outputs = model.generate(encoded_input, max_length=50, num_return_sequences=1)
|
||||
# generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
# for i, generated_text in enumerate(generated_texts):
|
||||
# print(f"Generated text {i + 1}: {generated_text}")
|
||||
|
||||
# # case 3
|
||||
# from transformers import GPT2Tokenizer, GPT2Model
|
||||
# tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
|
||||
# model = GPT2Model.from_pretrained(checkpoint)
|
||||
# text = "Replace me by any text you'd like."
|
||||
# encoded_input = tokenizer(text, return_tensors='pt')
|
||||
# outputs = model(**encoded_input)
|
||||
# print(outputs)
|
||||
# last_hidden_states = outputs.last_hidden_state
|
||||
# print(last_hidden_states)
|
||||
|
||||
# case 4
|
||||
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
# model = AutoModel.from_pretrained(checkpoint)
|
||||
# inputs = tokenizer.encode("Write a short story", return_tensors="pt")
|
||||
# model = model.eval()
|
||||
# print(inputs)
|
||||
# outputs = model(inputs)
|
||||
# print(outputs)
|
||||
|
||||
# case 5
|
||||
print('********* case 5 ***********')
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
||||
inputs = tokenizer.encode("Write a short story", return_tensors="pt")
|
||||
outputs = model.generate(inputs)
|
||||
print('result: ',tokenizer.batch_decode(outputs))
|
||||
|
||||
# case 6
|
||||
print('********* case 6 ***********')
|
||||
from transformers import GPT2Tokenizer, OPTForCausalLM
|
||||
model = OPTForCausalLM.from_pretrained(checkpoint)
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
|
||||
prompt = "Anti Vaccine Movemenet"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
||||
|
||||
gen_tokens = model.generate(inputs,do_sample=True,temperature=0.9,max_length=100)
|
||||
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
||||
print('gen_text', gen_text)
|
||||
# generate_ids = model.generate(inputs,max_length=2000,early_stopping= True,do_sample=True,min_length=2000,top_k=125,top_p=0.92,temperature= 0.85,repetition_penalty=1.5,num_return_sequences=3)
|
||||
# for i, sample_output in enumerate(generate_ids):
|
||||
# result = tokenizer.decode(sample_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
||||
# print(result)
|
Loading…
Reference in New Issue