add finetune file

pull/672/head
wanghh2000 2023-12-28 21:32:35 +08:00
parent fe24caa129
commit e4d57691d5
2 changed files with 127 additions and 0 deletions

52
ptuning/finetune-opt.py Normal file
View File

@ -0,0 +1,52 @@
# https://github.com/jesusoctavioas/Finetune_opt_bnb_peft
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
import torch
# import os
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = torch.device("cpu")
print("device:", device)
checkpoint = "/Users/hhwang/models/opt-125m"
checkpoint = "/Users/hhwang/models/opt-350m"
# checkpoint = "/Users/hhwang/models/gpt2"
print('checkpoint:', checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=False)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# model = AutoModelForCausalLM.from_pretrained(checkpoint, load_in_8bit=True, device_map='auto')
model = AutoModelForCausalLM.from_pretrained(checkpoint)
batch = tokenizer("Two things are infinite: ", return_tensors='pt')
output_tokens = model.generate(**batch, max_new_tokens=50)
print('result:', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
from datasets import load_dataset
# data = load_dataset("Abirate/english_quotes")
dataset = load_dataset("/Users/hhwang/models/dataset/english_quotes")
print('dataset', dataset)
dataset = dataset.map(lambda samples: tokenizer(samples['quote']), batched=True)
train_ds = dataset['train'].select(range(100))
print('train_ds', train_ds)
trainer = Trainer(
model=model,
train_dataset=train_ds,
args=TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=2,
max_steps=10,
learning_rate=2e-4,
# fp16=True, # only works on cuda
logging_steps=1,
output_dir='outputs'
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
print('begin train')
trainer.train()
print('done train')

75
ptuning/finetune-use.py Normal file
View File

@ -0,0 +1,75 @@
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel, AutoModelForCausalLM
from transformers import pipeline
checkpoint = "bigscience/mt0-large"
checkpoint = "/Users/hhwang/models/gpt2"
checkpoint = "/Users/hhwang/models/opt-125m"
checkpoint = "/Users/hhwang/models/opt-350m"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# inputs = tokenizer.encode("Write a short story", return_tensors="pt")
# outputs = model.generate(inputs)
# print(tokenizer.decode(outputs[0]))
# case 1
# pipe = pipeline(task='text-generation', model=checkpoint)
# print(pipe)
# result = pipe("tell me a joke")
# print('result: ',result)
# case 2
# from transformers import GPT2Tokenizer, GPT2LMHeadModel
# tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
# model = GPT2LMHeadModel.from_pretrained(checkpoint)
# text = "Replace me by any text you'd like."
# encoded_input = tokenizer.encode(text, return_tensors='pt')
# outputs = model.generate(encoded_input, max_length=50, num_return_sequences=1)
# generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
# for i, generated_text in enumerate(generated_texts):
# print(f"Generated text {i + 1}: {generated_text}")
# # case 3
# from transformers import GPT2Tokenizer, GPT2Model
# tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
# model = GPT2Model.from_pretrained(checkpoint)
# text = "Replace me by any text you'd like."
# encoded_input = tokenizer(text, return_tensors='pt')
# outputs = model(**encoded_input)
# print(outputs)
# last_hidden_states = outputs.last_hidden_state
# print(last_hidden_states)
# case 4
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModel.from_pretrained(checkpoint)
# inputs = tokenizer.encode("Write a short story", return_tensors="pt")
# model = model.eval()
# print(inputs)
# outputs = model(inputs)
# print(outputs)
# case 5
print('********* case 5 ***********')
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
inputs = tokenizer.encode("Write a short story", return_tensors="pt")
outputs = model.generate(inputs)
print('result: ',tokenizer.batch_decode(outputs))
# case 6
print('********* case 6 ***********')
from transformers import GPT2Tokenizer, OPTForCausalLM
model = OPTForCausalLM.from_pretrained(checkpoint)
tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
prompt = "Anti Vaccine Movemenet"
inputs = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(inputs,do_sample=True,temperature=0.9,max_length=100)
gen_text = tokenizer.batch_decode(gen_tokens)[0]
print('gen_text', gen_text)
# generate_ids = model.generate(inputs,max_length=2000,early_stopping= True,do_sample=True,min_length=2000,top_k=125,top_p=0.92,temperature= 0.85,repetition_penalty=1.5,num_return_sequences=3)
# for i, sample_output in enumerate(generate_ids):
# result = tokenizer.decode(sample_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
# print(result)