mirror of https://github.com/THUDM/ChatGLM2-6B
add lora finetune
parent
5c184f44dd
commit
e1b760b706
|
@ -0,0 +1,80 @@
|
|||
import torch
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
elif torch.backends.mps.is_available():
|
||||
device = torch.device("mps")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
print("device:", device)
|
||||
|
||||
checkpoint = "/Users/hhwang/models/opt-350m"
|
||||
checkpoint = "/Users/hhwang/models/opt-125m"
|
||||
|
||||
prompt = "No matter how plain a woman may be"
|
||||
print('***************** before lora finetune *********************')
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
||||
batch = tokenizer(prompt, return_tensors='pt')
|
||||
output_tokens = model.generate(**batch, max_new_tokens=50)
|
||||
print('prompt:', prompt)
|
||||
print('result:', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
|
||||
|
||||
print('***************** begin lora finetune *********************')
|
||||
from peft import LoraConfig, TaskType
|
||||
from peft import get_peft_model
|
||||
|
||||
lora_config = LoraConfig(
|
||||
r=16,
|
||||
target_modules=["q_proj", "v_proj"],
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
lora_alpha=32,
|
||||
lora_dropout=0.05
|
||||
)
|
||||
lora_model = get_peft_model(model, lora_config)
|
||||
lora_model.print_trainable_parameters()
|
||||
|
||||
|
||||
from datasets import load_dataset
|
||||
dataset = load_dataset("/Users/hhwang/models/dataset/english_quotes")
|
||||
dataset = dataset.map(lambda samples: tokenizer(samples['quote']), batched=True)
|
||||
train_ds = dataset['train'].select(range(100))
|
||||
|
||||
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
||||
trainer = Trainer(
|
||||
model=lora_model,
|
||||
train_dataset=train_ds,
|
||||
args=TrainingArguments(
|
||||
per_device_train_batch_size=4,
|
||||
gradient_accumulation_steps=4,
|
||||
warmup_steps=3,
|
||||
max_steps=10,
|
||||
learning_rate=2e-4,
|
||||
# fp16=True, # only works on cuda
|
||||
logging_steps=1,
|
||||
output_dir='outputs'
|
||||
),
|
||||
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
||||
)
|
||||
lora_model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
||||
|
||||
print('begin train')
|
||||
trainer.train()
|
||||
print('done train')
|
||||
|
||||
lora_checkpoint = "/tmp/outputs/opt-350m-lora"
|
||||
lora_model.save_pretrained(lora_checkpoint)
|
||||
print('Save', lora_checkpoint)
|
||||
|
||||
print('***************** after lora finetune *********************')
|
||||
from peft import PeftModel, PeftConfig
|
||||
config = PeftConfig.from_pretrained(lora_checkpoint)
|
||||
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
|
||||
lora_model = PeftModel.from_pretrained(model, lora_checkpoint)
|
||||
batch = tokenizer(prompt, return_tensors='pt')
|
||||
output_tokens = lora_model.generate(**batch, max_new_tokens=50)
|
||||
print('prompt:', prompt)
|
||||
print('result:', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
|
||||
|
|
@ -38,7 +38,7 @@ train_ds = dataset['train'].select(range(100))
|
|||
print('train_ds', train_ds)
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
model=model,
|
||||
train_dataset=train_ds,
|
||||
args=TrainingArguments(
|
||||
per_device_train_batch_size=4,
|
||||
|
|
Loading…
Reference in New Issue