fix: 返回json缺少usage

pull/479/head
zkz098 2023-08-20 22:41:45 +08:00
parent 80602dcae1
commit ae180ba8b8
No known key found for this signature in database
GPG Key ID: F86D14AB6F1FB5A9
2 changed files with 19 additions and 8 deletions

View File

@ -5,6 +5,8 @@
import time
import tiktoken
import torch
import uvicorn
from pydantic import BaseModel, Field
@ -17,7 +19,7 @@ from sse_starlette.sse import ServerSentEvent, EventSourceResponse
@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
async def lifespan(app: FastAPI): # collects GPU memory
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
@ -34,6 +36,7 @@ app.add_middleware(
allow_headers=["*"],
)
class ModelCard(BaseModel):
id: str
object: str = "model"
@ -85,6 +88,7 @@ class ChatCompletionResponse(BaseModel):
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: dict
@app.get("/v1/models", response_model=ModelList)
@ -109,8 +113,8 @@ async def create_chat_completion(request: ChatCompletionRequest):
history = []
if len(prev_messages) % 2 == 0:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
history.append([prev_messages[i].content, prev_messages[i+1].content])
if prev_messages[i].role == "user" and prev_messages[i + 1].role == "assistant":
history.append([prev_messages[i].content, prev_messages[i + 1].content])
if request.stream:
generate = predict(query, history, request.model)
@ -122,8 +126,16 @@ async def create_chat_completion(request: ChatCompletionRequest):
message=ChatMessage(role="assistant", content=response),
finish_reason="stop"
)
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
pt = len(encoding.encode(query))
rt = len(encoding.encode(response))
usage_data = {
"prompt_tokens": pt,
"completion_tokens": rt,
"total_tokens": pt + rt
}
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion",
usage=usage_data)
async def predict(query: str, history: List[List[str]], model_id: str):
@ -154,7 +166,6 @@ async def predict(query: str, history: List[List[str]], model_id: str):
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
@ -165,7 +176,6 @@ async def predict(query: str, history: List[List[str]], model_id: str):
yield '[DONE]'
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).cuda()

View File

@ -7,4 +7,5 @@ mdtex2html
sentencepiece
accelerate
sse-starlette
streamlit>=1.24.0
streamlit>=1.24.0
tiktoken