finetune t5

pull/672/head
wanghh2000 2023-12-29 19:13:59 +08:00
parent d4048deebf
commit 78abaa4b71
5 changed files with 240 additions and 75 deletions

78
finetune/finetune-t5.py Normal file
View File

@ -0,0 +1,78 @@
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Seq2SeqTrainer, Seq2SeqTrainingArguments, DataCollatorForSeq2Seq
import torch
device = torch.device("cpu")
checkpoint = "/Users/hhwang/models/t5-small"
# checkpoint = "/Users/hhwang/models/flan-t5-small"
print('********* before finetune ***********')
tokenizer = AutoTokenizer.from_pretrained(checkpoint,use_fast=False)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# print(model.config)
inputs = tokenizer.encode("translate English to Chinese: That is good", return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=20)
print('result: ',tokenizer.batch_decode(outputs))
data = [
{"question": "今天天真好", "answer": "那一起打篮球去吧"},
{"question": "translate English to Chinese: That is good", "answer": "Not bad"}
]
def preprocess_function(examples):
inputs = tokenizer(examples["question"], max_length=32, truncation=True)
labels = tokenizer(examples["answer"], max_length=32, truncation=True)
inputs["labels"] = labels["input_ids"]
return inputs
from datasets import Dataset, load_dataset
dataset = Dataset.from_list(data)
dataset = dataset.map(preprocess_function, batched=True, remove_columns=dataset.column_names)
print(dataset)
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
# print(data_collator([dataset[0], dataset[1]]))
training_args = Seq2SeqTrainingArguments(
output_dir="checkpoints",
overwrite_output_dir=True,
use_cpu=True,
do_train=True,
do_eval=True,
learning_rate=1e-3,
lr_scheduler_type="constant",
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=10,
weight_decay=0.01,
save_steps=10,
save_total_limit=5,
logging_first_step=True,
logging_steps=1,
# logging_dir="./",
eval_steps=1,
evaluation_strategy="steps",
load_best_model_at_end=True
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=dataset,
eval_dataset=dataset,
data_collator=data_collator,
# compute_metrics=compute_metrics
)
print('begin train')
trainer.train()
print('done train')
finetune_mode = "/tmp/outputs/t5-small"
trainer.save_model(finetune_mode)
print('********* after finetune ***********')
prompt = "translate English to Chinese: That is good"
model = AutoModelForSeq2SeqLM.from_pretrained(finetune_mode)
generator = pipeline("summarization", model=model, tokenizer=tokenizer)
print(generator(prompt))

View File

@ -1,75 +0,0 @@
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel, AutoModelForCausalLM
from transformers import pipeline
checkpoint = "bigscience/mt0-large"
checkpoint = "/Users/hhwang/models/gpt2"
checkpoint = "/Users/hhwang/models/opt-125m"
checkpoint = "/Users/hhwang/models/opt-350m"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# inputs = tokenizer.encode("Write a short story", return_tensors="pt")
# outputs = model.generate(inputs)
# print(tokenizer.decode(outputs[0]))
# case 1
# pipe = pipeline(task='text-generation', model=checkpoint)
# print(pipe)
# result = pipe("tell me a joke")
# print('result: ',result)
# case 2
# from transformers import GPT2Tokenizer, GPT2LMHeadModel
# tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
# model = GPT2LMHeadModel.from_pretrained(checkpoint)
# text = "Replace me by any text you'd like."
# encoded_input = tokenizer.encode(text, return_tensors='pt')
# outputs = model.generate(encoded_input, max_length=50, num_return_sequences=1)
# generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
# for i, generated_text in enumerate(generated_texts):
# print(f"Generated text {i + 1}: {generated_text}")
# # case 3
# from transformers import GPT2Tokenizer, GPT2Model
# tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
# model = GPT2Model.from_pretrained(checkpoint)
# text = "Replace me by any text you'd like."
# encoded_input = tokenizer(text, return_tensors='pt')
# outputs = model(**encoded_input)
# print(outputs)
# last_hidden_states = outputs.last_hidden_state
# print(last_hidden_states)
# case 4
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModel.from_pretrained(checkpoint)
# inputs = tokenizer.encode("Write a short story", return_tensors="pt")
# model = model.eval()
# print(inputs)
# outputs = model(inputs)
# print(outputs)
# case 5
print('********* case 5 ***********')
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
inputs = tokenizer.encode("Write a short story", return_tensors="pt")
outputs = model.generate(inputs)
print('result: ',tokenizer.batch_decode(outputs))
# case 6
print('********* case 6 ***********')
from transformers import GPT2Tokenizer, OPTForCausalLM
model = OPTForCausalLM.from_pretrained(checkpoint)
tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
prompt = "Anti Vaccine Movemenet"
inputs = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(inputs,do_sample=True,temperature=0.9,max_length=100)
gen_text = tokenizer.batch_decode(gen_tokens)[0]
print('gen_text', gen_text)
# generate_ids = model.generate(inputs,max_length=2000,early_stopping= True,do_sample=True,min_length=2000,top_k=125,top_p=0.92,temperature= 0.85,repetition_penalty=1.5,num_return_sequences=3)
# for i, sample_output in enumerate(generate_ids):
# result = tokenizer.decode(sample_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
# print(result)

138
finetune/gpt-opt-use.py Normal file
View File

@ -0,0 +1,138 @@
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel, AutoModelForCausalLM
from transformers import pipeline
import torch
device = torch.device("cpu")
checkpoint = "bigscience/mt0-large"
checkpoint = "/Users/hhwang/models/gpt2"
# checkpoint = "/Users/hhwang/models/opt-125m"
# checkpoint = "/Users/hhwang/models/opt-350m"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# inputs = tokenizer.encode("Write a short story", return_tensors="pt")
# outputs = model.generate(inputs)
# print(tokenizer.decode(outputs[0]))
# case 1
# pipe = pipeline(task='text-generation', model=checkpoint)
# print(pipe)
# result = pipe("tell me a joke")
# print('result: ',result)
# case 2
print('********* case 2 ***********')
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
model = GPT2LMHeadModel.from_pretrained(checkpoint)
text = "Replace me by any text you'd like."
encoded_input = tokenizer.encode(text, return_tensors='pt')
outputs = model.generate(encoded_input, max_length=50, num_return_sequences=1)
print('outputs:', outputs)
print(outputs.shape)
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
for i, generated_text in enumerate(generated_texts):
print(f"Generated text {i + 1}: {generated_text}")
# case 3
print('********* case 3 ***********')
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
model = GPT2Model.from_pretrained(checkpoint)
print('config', model.config)
# print('model', model)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
outputs = model(**encoded_input)
# print(outputs)
last_hidden_states = outputs.last_hidden_state
print('last_hidden_states', last_hidden_states)
print(last_hidden_states.shape)
print(len(last_hidden_states[0][0]))
import torch.nn as nn
lm_head = nn.Linear(model.config.n_embd, model.config.vocab_size, bias=False)
lm_logits = lm_head(last_hidden_states)
print('lm_logits', lm_logits)
print(lm_logits.shape)
# case 4
# print('********* case 4 ***********')
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModel.from_pretrained(checkpoint)
# encoded_input = tokenizer.encode("Write a short story", return_tensors="pt")
# model = model.eval()
# print('config', model.config)
# print('model', model)
# print('inputs', encoded_input)
# outputs = model(encoded_input)
# print(outputs)
# case 5
# print('********* case 5 ***********')
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForCausalLM.from_pretrained(checkpoint)
# inputs = tokenizer.encode("Write a short story", return_tensors="pt")
# outputs = model.generate(inputs)
# print('result: ',tokenizer.batch_decode(outputs))
# case 6
# print('********* case 6 ***********')
# from transformers import GPT2Tokenizer, OPTForCausalLM
# model = OPTForCausalLM.from_pretrained(checkpoint)
# tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
# prompt = "Anti Vaccine Movemenet"
# inputs = tokenizer(prompt, return_tensors="pt").input_ids
# gen_tokens = model.generate(inputs,do_sample=True,temperature=0.9,max_length=100)
# gen_text = tokenizer.batch_decode(gen_tokens)[0]
# print('gen_text', gen_text)
# generate_ids = model.generate(inputs,max_length=2000,early_stopping= True,do_sample=True,min_length=2000,top_k=125,top_p=0.92,temperature= 0.85,repetition_penalty=1.5,num_return_sequences=3)
# for i, sample_output in enumerate(generate_ids):
# result = tokenizer.decode(sample_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
# print(result)
# case 7
# print('********* case 7 ***********')
# generator = pipeline('text-generation', model=checkpoint, device="cpu")
# text_inputs = ["tell me joke", "How do you", "Would you help", "I like apple", "This is something"]
# sent_gen = generator(text_inputs, max_length=50, num_return_sequences=2, repetition_penalty=1.3, top_k = 20)
# #返回的sent_gen 形如#[[{'generated_text':"..."},{}],[{},{}]]
# for i in sent_gen:
# print(i)
# case 8
# print('********* case 8 ***********')
# from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextGenerationPipeline
# tokenizer = GPT2Tokenizer.from_pretrained(checkpoint)
# model = GPT2LMHeadModel.from_pretrained(checkpoint)
# text_generator = TextGenerationPipeline(model, tokenizer, batch_size=3, device="cpu")
# text_generator.tokenizer.pad_token_id = model.config.eos_token_id
# text_inputs = ["tell me joke", "How do you", "Would you help", "I like apple", "This is something"]
# gen = text_generator(text_inputs, max_length=50, repetition_penalty=10.0, do_sample=True, num_beams=5, top_k=10)
# for sent in gen:
# gen_seq = sent[0]["generated_text"]
# print("")
# print(gen_seq)
# case 9
# print('********* case 9 ***********')
# from transformers import AutoTokenizer, AutoModelWithLMHead
# import torch
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelWithLMHead.from_pretrained(checkpoint)
# config=model.config
# # print('config', config)
# print(model)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = model.to(device)
# texts = ["tell me joke", "How do you", "Would you help", "I like apple", "This is something"]
# #用batch输入的时候一定要设置padding
# tokenizer.pad_token = tokenizer.eos_token
# encoding = tokenizer(texts, return_tensors='pt', padding=True).to(device)
# with torch.no_grad():
# generated_ids = model.generate(**encoding, max_length=50, do_sample=True, top_k=20, repetition_penalty=3.0)
# generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# for l in generated_texts:
# print(l)

24
finetune/t5-use.py Normal file
View File

@ -0,0 +1,24 @@
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
device = torch.device("cpu")
checkpoint = "/Users/hhwang/models/t5-small"
checkpoint = "/Users/hhwang/models/flan-t5-small"
print('********* case 1 ***********')
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# # print(model.config)
# inputs = tokenizer.encode("translate English to German: That is good", return_tensors="pt")
# outputs = model.generate(inputs, max_new_tokens=20)
# print('result: ',tokenizer.batch_decode(outputs))
print('********* case 2 ***********')
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
prompt = "translate English to German: That is good?"
generator = pipeline("summarization", model=model, tokenizer=tokenizer)
print(generator(prompt))