mirror of https://github.com/THUDM/ChatGLM2-6B
use transformers trainer
parent
1f1fb21631
commit
771ad3ac93
|
@ -21,8 +21,9 @@ Fine-tuning the library models for sequence to sequence for P-Tuning v2
|
|||
# CUDA_VISIBLE_DEVICES=-1 python finetune-p-tuning-v2.py
|
||||
|
||||
# accelerate launch --cpu --num_machines=1 --num_processes=1 --num_cpu_threads_per_process=1 finetune-p-tuning-v2.py
|
||||
# accelerate launch --cpu --num_machines=1 --num_processes=4 --num_cpu_threads_per_process=1 finetune-p-tuning-v2.py
|
||||
|
||||
import logging
|
||||
# import logging
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
|
@ -45,34 +46,42 @@ from transformers import (
|
|||
# set_seed,
|
||||
)
|
||||
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
# from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.utils.data import Dataset
|
||||
# import torch
|
||||
# from torch import nn
|
||||
# from torch.utils.data import Dataset
|
||||
|
||||
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
||||
# from transformers.deepspeed import is_deepspeed_zero3_enabled
|
||||
# from trainer import PrefixTrainer
|
||||
from transformers.trainer_utils import PredictionOutput
|
||||
# from transformers.trainer_utils import PredictionOutput
|
||||
# from transformers.utils import logging
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
# import os
|
||||
# from typing import Optional
|
||||
from transformers import Trainer
|
||||
|
||||
import torch
|
||||
from transformers.modeling_utils import PreTrainedModel, unwrap_model
|
||||
# import torch
|
||||
# from transformers.modeling_utils import PreTrainedModel, unwrap_model
|
||||
# from transformers.utils import logging
|
||||
|
||||
# from trainer_seq2seq import Seq2SeqTrainer
|
||||
|
||||
# from arguments import ModelArguments, DataTrainingArguments
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.INFO)
|
||||
# logger = logging.getLogger(__name__)
|
||||
# logger.setLevel(logging.INFO)
|
||||
|
||||
def main():
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
# print(torch.backends.mps.is_available())
|
||||
# print(torch.backends.mps.is_built())
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
elif torch.backends.mps.is_available():
|
||||
device = torch.device("mps")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
print("device:", device)
|
||||
# parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
||||
# if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
|
@ -162,9 +171,13 @@ def main():
|
|||
# # Finetune
|
||||
# model = model.float()
|
||||
|
||||
# P-tuning v2
|
||||
# P-tuning v2, do not work for accelerate
|
||||
model = model.half()
|
||||
model.transformer.prefix_encoder.float()
|
||||
|
||||
# finetune, work for accelerate
|
||||
# model = model.float()
|
||||
|
||||
print('model half done')
|
||||
|
||||
prefix = ""
|
||||
|
@ -257,12 +270,12 @@ def main():
|
|||
train_dataset = train_dataset.map(
|
||||
preprocess_function_train,
|
||||
batched=True,
|
||||
num_proc=10,
|
||||
num_proc=5,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=False,
|
||||
desc="Running tokenizer on train dataset",
|
||||
)
|
||||
print_dataset_example(train_dataset[0])
|
||||
# print_dataset_example(train_dataset[0])
|
||||
|
||||
max_eval_samples = 5
|
||||
do_eval = True
|
||||
|
@ -278,7 +291,7 @@ def main():
|
|||
load_from_cache_file=False,
|
||||
desc="Running tokenizer on validation dataset",
|
||||
)
|
||||
print_dataset_example(eval_dataset[0])
|
||||
# print_dataset_example(eval_dataset[0])
|
||||
|
||||
# if training_args.do_predict:
|
||||
# max_target_length = data_args.val_max_target_length
|
||||
|
@ -309,38 +322,39 @@ def main():
|
|||
padding=False
|
||||
)
|
||||
print("data_collator done")
|
||||
# # Metric
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# if isinstance(preds, tuple):
|
||||
# preds = preds[0]
|
||||
# decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||
# if ignore_pad_token_for_loss:
|
||||
# # Replace -100 in the labels as we can't decode them.
|
||||
# labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
# decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||||
|
||||
# Metric
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||
if ignore_pad_token_for_loss:
|
||||
# Replace -100 in the labels as we can't decode them.
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||||
|
||||
# score_dict = {
|
||||
# "rouge-1": [],
|
||||
# "rouge-2": [],
|
||||
# "rouge-l": [],
|
||||
# "bleu-4": []
|
||||
# }
|
||||
# for pred, label in zip(decoded_preds, decoded_labels):
|
||||
# hypothesis = list(jieba.cut(pred))
|
||||
# reference = list(jieba.cut(label))
|
||||
# rouge = Rouge()
|
||||
# scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference))
|
||||
# result = scores[0]
|
||||
score_dict = {
|
||||
"rouge-1": [],
|
||||
"rouge-2": [],
|
||||
"rouge-l": [],
|
||||
"bleu-4": []
|
||||
}
|
||||
for pred, label in zip(decoded_preds, decoded_labels):
|
||||
hypothesis = list(jieba.cut(pred))
|
||||
reference = list(jieba.cut(label))
|
||||
rouge = Rouge()
|
||||
scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference))
|
||||
result = scores[0]
|
||||
|
||||
# for k, v in result.items():
|
||||
# score_dict[k].append(round(v["f"] * 100, 4))
|
||||
# bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
|
||||
# score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
||||
for k, v in result.items():
|
||||
score_dict[k].append(round(v["f"] * 100, 4))
|
||||
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
|
||||
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
||||
|
||||
# for k, v in score_dict.items():
|
||||
# score_dict[k] = float(np.mean(v))
|
||||
# return score_dict
|
||||
for k, v in score_dict.items():
|
||||
score_dict[k] = float(np.mean(v))
|
||||
return score_dict
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
# training_args.generation_max_length = (
|
||||
|
@ -351,40 +365,52 @@ def main():
|
|||
# training_args.generation_num_beams = (
|
||||
# data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
|
||||
# )
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Seq2SeqTrainer(
|
||||
model=model,
|
||||
# args=training_args,
|
||||
# trainer = Seq2SeqTrainer(
|
||||
# model=model,
|
||||
# # args=training_args,
|
||||
# train_dataset=train_dataset,
|
||||
# eval_dataset=eval_dataset,
|
||||
# tokenizer=tokenizer,
|
||||
# data_collator=data_collator,
|
||||
# compute_metrics=compute_metrics,
|
||||
# save_changed=PRE_SEQ_LEN is not None
|
||||
# )
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
# compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
||||
save_changed=PRE_SEQ_LEN is not None
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
print('build trainer done')
|
||||
|
||||
# Training
|
||||
if do_train:
|
||||
checkpoint = False
|
||||
# checkpoint = False
|
||||
# if training_args.resume_from_checkpoint is not None:
|
||||
# checkpoint = training_args.resume_from_checkpoint
|
||||
# elif last_checkpoint is not None:
|
||||
# checkpoint = last_checkpoint
|
||||
model.gradient_checkpointing_enable()
|
||||
model.enable_input_require_grads()
|
||||
logger.info("begin trainning")
|
||||
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||||
print("begin trainning")
|
||||
# train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||||
train_result = trainer.train()
|
||||
# trainer.save_model() # Saves the tokenizer too for easy upload
|
||||
logger.info("done trainning")
|
||||
print("done trainning")
|
||||
metrics = train_result.metrics
|
||||
max_train_samples = len(train_dataset)
|
||||
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
||||
|
||||
trainer.log_metrics("train", metrics)
|
||||
trainer.save_metrics("train", metrics)
|
||||
trainer.save_state()
|
||||
logger.info("save state")
|
||||
print("save state")
|
||||
# trainer.save_model("tmp_trainer/ptuning")
|
||||
print("save model")
|
||||
|
||||
# # Evaluation
|
||||
# results = {}
|
||||
|
@ -427,268 +453,267 @@ def main():
|
|||
# writer.write(f"{res}\n")
|
||||
# return results
|
||||
|
||||
WEIGHTS_NAME = "pytorch_model.bin"
|
||||
TRAINING_ARGS_NAME = "training_args.bin"
|
||||
# WEIGHTS_NAME = "pytorch_model.bin"
|
||||
# TRAINING_ARGS_NAME = "training_args.bin"
|
||||
|
||||
class PrefixTrainer(Trainer):
|
||||
def __init__(self, *args, save_changed=False, **kwargs):
|
||||
self.save_changed = save_changed
|
||||
super().__init__(*args, **kwargs)
|
||||
# class PrefixTrainer(Trainer):
|
||||
# def __init__(self, *args, save_changed=False, **kwargs):
|
||||
# self.save_changed = save_changed
|
||||
# super().__init__(*args, **kwargs)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
||||
# If we are executing this function, we are the process zero, so we don't check for that.
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
logger.info(f"Saving model checkpoint to {output_dir}")
|
||||
# Save a trained model and configuration using `save_pretrained()`.
|
||||
# They can then be reloaded using `from_pretrained()`
|
||||
if not isinstance(self.model, PreTrainedModel):
|
||||
if isinstance(unwrap_model(self.model), PreTrainedModel):
|
||||
if state_dict is None:
|
||||
state_dict = self.model.state_dict()
|
||||
unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
|
||||
else:
|
||||
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
|
||||
if state_dict is None:
|
||||
state_dict = self.model.state_dict()
|
||||
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
|
||||
else:
|
||||
if self.save_changed:
|
||||
print("Saving PrefixEncoder")
|
||||
state_dict = self.model.state_dict()
|
||||
filtered_state_dict = {}
|
||||
for k, v in self.model.named_parameters():
|
||||
if v.requires_grad:
|
||||
filtered_state_dict[k] = state_dict[k]
|
||||
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
|
||||
else:
|
||||
print("Saving the whole model")
|
||||
self.model.save_pretrained(output_dir, state_dict=state_dict)
|
||||
if self.tokenizer is not None:
|
||||
self.tokenizer.save_pretrained(output_dir)
|
||||
# def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
||||
# # If we are executing this function, we are the process zero, so we don't check for that.
|
||||
# output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
# os.makedirs(output_dir, exist_ok=True)
|
||||
# logger.info(f"Saving model checkpoint to {output_dir}")
|
||||
# # Save a trained model and configuration using `save_pretrained()`.
|
||||
# # They can then be reloaded using `from_pretrained()`
|
||||
# if not isinstance(self.model, PreTrainedModel):
|
||||
# if isinstance(unwrap_model(self.model), PreTrainedModel):
|
||||
# if state_dict is None:
|
||||
# state_dict = self.model.state_dict()
|
||||
# unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
|
||||
# else:
|
||||
# logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
|
||||
# if state_dict is None:
|
||||
# state_dict = self.model.state_dict()
|
||||
# torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
|
||||
# else:
|
||||
# if self.save_changed:
|
||||
# print("Saving PrefixEncoder")
|
||||
# state_dict = self.model.state_dict()
|
||||
# filtered_state_dict = {}
|
||||
# for k, v in self.model.named_parameters():
|
||||
# if v.requires_grad:
|
||||
# filtered_state_dict[k] = state_dict[k]
|
||||
# self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
|
||||
# else:
|
||||
# print("Saving the whole model")
|
||||
# self.model.save_pretrained(output_dir, state_dict=state_dict)
|
||||
# if self.tokenizer is not None:
|
||||
# self.tokenizer.save_pretrained(output_dir)
|
||||
|
||||
# Good practice: save your training arguments together with the trained model
|
||||
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
|
||||
# # Good practice: save your training arguments together with the trained model
|
||||
# torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
|
||||
|
||||
# class Seq2SeqTrainer(PrefixTrainer):
|
||||
# def evaluate(
|
||||
# self,
|
||||
# eval_dataset: Optional[Dataset] = None,
|
||||
# ignore_keys: Optional[List[str]] = None,
|
||||
# metric_key_prefix: str = "eval",
|
||||
# **gen_kwargs
|
||||
# ) -> Dict[str, float]:
|
||||
# """
|
||||
# Run evaluation and returns metrics.
|
||||
|
||||
# The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
|
||||
# (pass it to the init `compute_metrics` argument).
|
||||
|
||||
# You can also subclass and override this method to inject custom behavior.
|
||||
|
||||
# Args:
|
||||
# eval_dataset (`Dataset`, *optional*):
|
||||
# Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns
|
||||
# not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
|
||||
# method.
|
||||
# ignore_keys (`List[str]`, *optional*):
|
||||
# A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
||||
# gathering predictions.
|
||||
# metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
||||
# An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
||||
# "eval_bleu" if the prefix is `"eval"` (default)
|
||||
# max_length (`int`, *optional*):
|
||||
# The maximum target length to use when predicting with the generate method.
|
||||
# num_beams (`int`, *optional*):
|
||||
# Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
||||
# beam search.
|
||||
# gen_kwargs:
|
||||
# Additional `generate` specific kwargs.
|
||||
|
||||
# Returns:
|
||||
# A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
|
||||
# dictionary also contains the epoch number which comes from the training state.
|
||||
# """
|
||||
|
||||
# gen_kwargs = gen_kwargs.copy()
|
||||
# if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
# gen_kwargs["max_length"] = self.args.generation_max_length
|
||||
# gen_kwargs["num_beams"] = (
|
||||
# gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
||||
# )
|
||||
# self._gen_kwargs = gen_kwargs
|
||||
|
||||
# return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
||||
|
||||
# def predict(
|
||||
# self,
|
||||
# test_dataset: Dataset,
|
||||
# ignore_keys: Optional[List[str]] = None,
|
||||
# metric_key_prefix: str = "test",
|
||||
# **gen_kwargs
|
||||
# ) -> PredictionOutput:
|
||||
# """
|
||||
# Run prediction and returns predictions and potential metrics.
|
||||
|
||||
# Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
|
||||
# will also return metrics, like in `evaluate()`.
|
||||
|
||||
# Args:
|
||||
# test_dataset (`Dataset`):
|
||||
# Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the
|
||||
# `model.forward()` method are automatically removed. Has to implement the method `__len__`
|
||||
# ignore_keys (`List[str]`, *optional*):
|
||||
# A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
||||
# gathering predictions.
|
||||
# metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
||||
# An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
||||
# "eval_bleu" if the prefix is `"eval"` (default)
|
||||
# max_length (`int`, *optional*):
|
||||
# The maximum target length to use when predicting with the generate method.
|
||||
# num_beams (`int`, *optional*):
|
||||
# Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
||||
# beam search.
|
||||
# gen_kwargs:
|
||||
# Additional `generate` specific kwargs.
|
||||
|
||||
# <Tip>
|
||||
|
||||
# If your predictions or labels have different sequence lengths (for instance because you're doing dynamic
|
||||
# padding in a token classification task) the predictions will be padded (on the right) to allow for
|
||||
# concatenation into one array. The padding index is -100.
|
||||
|
||||
# </Tip>
|
||||
|
||||
# Returns: *NamedTuple* A namedtuple with the following keys:
|
||||
|
||||
# - predictions (`np.ndarray`): The predictions on `test_dataset`.
|
||||
# - label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
|
||||
# - metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
|
||||
# labels).
|
||||
# """
|
||||
|
||||
# gen_kwargs = gen_kwargs.copy()
|
||||
# if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
# gen_kwargs["max_length"] = self.args.generation_max_length
|
||||
# gen_kwargs["num_beams"] = (
|
||||
# gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
||||
# )
|
||||
# self._gen_kwargs = gen_kwargs
|
||||
|
||||
|
||||
class Seq2SeqTrainer(PrefixTrainer):
|
||||
def evaluate(
|
||||
self,
|
||||
eval_dataset: Optional[Dataset] = None,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
metric_key_prefix: str = "eval",
|
||||
**gen_kwargs
|
||||
) -> Dict[str, float]:
|
||||
"""
|
||||
Run evaluation and returns metrics.
|
||||
# return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
||||
|
||||
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
|
||||
(pass it to the init `compute_metrics` argument).
|
||||
# def prediction_step(
|
||||
# self,
|
||||
# model: nn.Module,
|
||||
# inputs: Dict[str, Union[torch.Tensor, Any]],
|
||||
# prediction_loss_only: bool,
|
||||
# ignore_keys: Optional[List[str]] = None,
|
||||
# ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
# """
|
||||
# Perform an evaluation step on `model` using `inputs`.
|
||||
|
||||
You can also subclass and override this method to inject custom behavior.
|
||||
# Subclass and override to inject custom behavior.
|
||||
|
||||
Args:
|
||||
eval_dataset (`Dataset`, *optional*):
|
||||
Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns
|
||||
not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
|
||||
method.
|
||||
ignore_keys (`List[str]`, *optional*):
|
||||
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
||||
gathering predictions.
|
||||
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
||||
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
||||
"eval_bleu" if the prefix is `"eval"` (default)
|
||||
max_length (`int`, *optional*):
|
||||
The maximum target length to use when predicting with the generate method.
|
||||
num_beams (`int`, *optional*):
|
||||
Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
||||
beam search.
|
||||
gen_kwargs:
|
||||
Additional `generate` specific kwargs.
|
||||
# Args:
|
||||
# model (`nn.Module`):
|
||||
# The model to evaluate.
|
||||
# inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
||||
# The inputs and targets of the model.
|
||||
|
||||
Returns:
|
||||
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
|
||||
dictionary also contains the epoch number which comes from the training state.
|
||||
"""
|
||||
# The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
||||
# argument `labels`. Check your model's documentation for all accepted arguments.
|
||||
# prediction_loss_only (`bool`):
|
||||
# Whether or not to return the loss only.
|
||||
|
||||
gen_kwargs = gen_kwargs.copy()
|
||||
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
gen_kwargs["max_length"] = self.args.generation_max_length
|
||||
gen_kwargs["num_beams"] = (
|
||||
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
||||
)
|
||||
self._gen_kwargs = gen_kwargs
|
||||
# Return:
|
||||
# Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
|
||||
# labels (each being optional).
|
||||
# """
|
||||
|
||||
return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
||||
# if not self.args.predict_with_generate or prediction_loss_only:
|
||||
# return super().prediction_step(
|
||||
# model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
||||
# )
|
||||
|
||||
def predict(
|
||||
self,
|
||||
test_dataset: Dataset,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
metric_key_prefix: str = "test",
|
||||
**gen_kwargs
|
||||
) -> PredictionOutput:
|
||||
"""
|
||||
Run prediction and returns predictions and potential metrics.
|
||||
# has_labels = "labels" in inputs
|
||||
# inputs = self._prepare_inputs(inputs)
|
||||
|
||||
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
|
||||
will also return metrics, like in `evaluate()`.
|
||||
# # XXX: adapt synced_gpus for fairscale as well
|
||||
# gen_kwargs = self._gen_kwargs.copy()
|
||||
# if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
# gen_kwargs["max_length"] = self.model.config.max_length
|
||||
# gen_kwargs["num_beams"] = (
|
||||
# gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
|
||||
# )
|
||||
# default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
|
||||
# gen_kwargs["synced_gpus"] = (
|
||||
# gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
|
||||
# )
|
||||
|
||||
Args:
|
||||
test_dataset (`Dataset`):
|
||||
Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the
|
||||
`model.forward()` method are automatically removed. Has to implement the method `__len__`
|
||||
ignore_keys (`List[str]`, *optional*):
|
||||
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
||||
gathering predictions.
|
||||
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
||||
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
||||
"eval_bleu" if the prefix is `"eval"` (default)
|
||||
max_length (`int`, *optional*):
|
||||
The maximum target length to use when predicting with the generate method.
|
||||
num_beams (`int`, *optional*):
|
||||
Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
||||
beam search.
|
||||
gen_kwargs:
|
||||
Additional `generate` specific kwargs.
|
||||
# if "attention_mask" in inputs:
|
||||
# gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
|
||||
# if "position_ids" in inputs:
|
||||
# gen_kwargs["position_ids"] = inputs.get("position_ids", None)
|
||||
# if "global_attention_mask" in inputs:
|
||||
# gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)
|
||||
|
||||
<Tip>
|
||||
# # prepare generation inputs
|
||||
# # some encoder-decoder models can have varying encoder's and thus
|
||||
# # varying model input names
|
||||
# if hasattr(self.model, "encoder") and self.model.encoder.main_input_name != self.model.main_input_name:
|
||||
# generation_inputs = inputs[self.model.encoder.main_input_name]
|
||||
# else:
|
||||
# generation_inputs = inputs[self.model.main_input_name]
|
||||
|
||||
If your predictions or labels have different sequence lengths (for instance because you're doing dynamic
|
||||
padding in a token classification task) the predictions will be padded (on the right) to allow for
|
||||
concatenation into one array. The padding index is -100.
|
||||
# gen_kwargs["input_ids"] = generation_inputs
|
||||
# generated_tokens = self.model.generate(**gen_kwargs)
|
||||
# generated_tokens = generated_tokens[:, generation_inputs.size()[-1]:]
|
||||
|
||||
</Tip>
|
||||
# # in case the batch is shorter than max length, the output should be padded
|
||||
# if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]:
|
||||
# generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
|
||||
# elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < (
|
||||
# gen_kwargs["max_new_tokens"] + 1
|
||||
# ):
|
||||
# generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)
|
||||
|
||||
Returns: *NamedTuple* A namedtuple with the following keys:
|
||||
# loss = None
|
||||
|
||||
- predictions (`np.ndarray`): The predictions on `test_dataset`.
|
||||
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
|
||||
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
|
||||
labels).
|
||||
"""
|
||||
# if self.args.prediction_loss_only:
|
||||
# return (loss, None, None)
|
||||
|
||||
gen_kwargs = gen_kwargs.copy()
|
||||
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
gen_kwargs["max_length"] = self.args.generation_max_length
|
||||
gen_kwargs["num_beams"] = (
|
||||
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
||||
)
|
||||
self._gen_kwargs = gen_kwargs
|
||||
# if has_labels:
|
||||
# labels = inputs["labels"]
|
||||
# if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]:
|
||||
# labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
|
||||
# elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < (
|
||||
# gen_kwargs["max_new_tokens"] + 1
|
||||
# ):
|
||||
# labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1))
|
||||
# else:
|
||||
# labels = None
|
||||
|
||||
# return (loss, generated_tokens, labels)
|
||||
|
||||
return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
||||
# def _pad_tensors_to_max_len(self, tensor, max_length):
|
||||
# if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
|
||||
# # If PAD token is not defined at least EOS token has to be defined
|
||||
# pad_token_id = (
|
||||
# self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
|
||||
# )
|
||||
# else:
|
||||
# if self.model.config.pad_token_id is not None:
|
||||
# pad_token_id = self.model.config.pad_token_id
|
||||
# else:
|
||||
# raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: nn.Module,
|
||||
inputs: Dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
"""
|
||||
Perform an evaluation step on `model` using `inputs`.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
|
||||
Args:
|
||||
model (`nn.Module`):
|
||||
The model to evaluate.
|
||||
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
||||
The inputs and targets of the model.
|
||||
|
||||
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
||||
argument `labels`. Check your model's documentation for all accepted arguments.
|
||||
prediction_loss_only (`bool`):
|
||||
Whether or not to return the loss only.
|
||||
|
||||
Return:
|
||||
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
|
||||
labels (each being optional).
|
||||
"""
|
||||
|
||||
if not self.args.predict_with_generate or prediction_loss_only:
|
||||
return super().prediction_step(
|
||||
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
||||
)
|
||||
|
||||
has_labels = "labels" in inputs
|
||||
inputs = self._prepare_inputs(inputs)
|
||||
|
||||
# XXX: adapt synced_gpus for fairscale as well
|
||||
gen_kwargs = self._gen_kwargs.copy()
|
||||
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
gen_kwargs["max_length"] = self.model.config.max_length
|
||||
gen_kwargs["num_beams"] = (
|
||||
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
|
||||
)
|
||||
default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
|
||||
gen_kwargs["synced_gpus"] = (
|
||||
gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
|
||||
)
|
||||
|
||||
if "attention_mask" in inputs:
|
||||
gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
|
||||
if "position_ids" in inputs:
|
||||
gen_kwargs["position_ids"] = inputs.get("position_ids", None)
|
||||
if "global_attention_mask" in inputs:
|
||||
gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)
|
||||
|
||||
# prepare generation inputs
|
||||
# some encoder-decoder models can have varying encoder's and thus
|
||||
# varying model input names
|
||||
if hasattr(self.model, "encoder") and self.model.encoder.main_input_name != self.model.main_input_name:
|
||||
generation_inputs = inputs[self.model.encoder.main_input_name]
|
||||
else:
|
||||
generation_inputs = inputs[self.model.main_input_name]
|
||||
|
||||
gen_kwargs["input_ids"] = generation_inputs
|
||||
generated_tokens = self.model.generate(**gen_kwargs)
|
||||
generated_tokens = generated_tokens[:, generation_inputs.size()[-1]:]
|
||||
|
||||
# in case the batch is shorter than max length, the output should be padded
|
||||
if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]:
|
||||
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
|
||||
elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < (
|
||||
gen_kwargs["max_new_tokens"] + 1
|
||||
):
|
||||
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)
|
||||
|
||||
loss = None
|
||||
|
||||
if self.args.prediction_loss_only:
|
||||
return (loss, None, None)
|
||||
|
||||
if has_labels:
|
||||
labels = inputs["labels"]
|
||||
if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]:
|
||||
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
|
||||
elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < (
|
||||
gen_kwargs["max_new_tokens"] + 1
|
||||
):
|
||||
labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1))
|
||||
else:
|
||||
labels = None
|
||||
|
||||
return (loss, generated_tokens, labels)
|
||||
|
||||
def _pad_tensors_to_max_len(self, tensor, max_length):
|
||||
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
|
||||
# If PAD token is not defined at least EOS token has to be defined
|
||||
pad_token_id = (
|
||||
self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
|
||||
)
|
||||
else:
|
||||
if self.model.config.pad_token_id is not None:
|
||||
pad_token_id = self.model.config.pad_token_id
|
||||
else:
|
||||
raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
|
||||
|
||||
padded_tensor = pad_token_id * torch.ones(
|
||||
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
|
||||
)
|
||||
padded_tensor[:, : tensor.shape[-1]] = tensor
|
||||
return padded_tensor
|
||||
# padded_tensor = pad_token_id * torch.ones(
|
||||
# (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
|
||||
# )
|
||||
# padded_tensor[:, : tensor.shape[-1]] = tensor
|
||||
# return padded_tensor
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue